Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites

Abstract

An ion channel's function depends largely on its location and density on neurons. Here we used high-resolution immunolocalization to determine the subcellular distribution of the hyperpolarization-activated and cyclic-nucleotide-gated channel subunit 1 (HCN1) in rat brain. Light microscopy revealed graded HCN1 immunoreactivity in apical dendrites of hippocampal, subicular and neocortical layer-5 pyramidal cells. Quantitative comparison of immunogold densities showed a 60-fold increase from somatic to distal apical dendritic membranes. Distal dendritic shafts had 16 times more HCN1 labeling than proximal dendrites of similar diameters. At the same distance from the soma, the density of HCN1 was significantly higher in dendritic shafts than in spines. Our results reveal the complex cell surface distribution of voltage-gated ion-channels, and predict its role in increasing the computational power of single neurons via subcellular domain and input-specific mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunoblot analysis of rat brain with HCN1 antibodies.
Figure 2: Light microscopic demonstration of HCN1 immunoreactivity in rat neocortex.
Figure 3: Double-immunofluorescence labeling of HCN1 with the rabbit (left) and guinea pig (right) antibodies in hippocampus (a, b) and somatosensory cortex (c, d).
Figure 4: Electron-microscopic immunogold localization of HCN1 immunoreactivity.
Figure 5: Electron micrographs showing the subcellular distribution of HCN1 immunoreactivity in the subiculum.
Figure 6: Quantitative evaluation of immunogold distribution of HCN1 in subicular pyramidal cells.

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 2001).

    Google Scholar 

  2. Conti, F. & Weinberg, R.J. Shaping excitation at glutamatergic synapses. Trends Neurosci. 22, 451–458 (1999).

    Article  CAS  Google Scholar 

  3. Ottersen, O.P. & Landsend, A.S. Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219–2224 (1997).

    Article  CAS  Google Scholar 

  4. Somogyi, P., Nusser, Z., Roberts, J.D.B. & Lujan, R. in Precision and Variability in the Placement of Pre- and Postsynaptic Receptors in Relation to Neurotransmitter Release Sites 82–93 (HFSP, Strasbourg, 1998).

    Google Scholar 

  5. Yuste, R. & Tank, D.W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    Article  CAS  Google Scholar 

  6. Craig, A.M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat. Neurosci. 4, 569–578 (2001).

    Article  CAS  Google Scholar 

  7. Petralia, R.S., Rubio, M.E. & Wenthold, R.J. Selectivity in the distribution of glutamate receptors in neurons. Cell. Biol. Int. 22, 603–608 (1998).

    Article  CAS  Google Scholar 

  8. Magee, J., Hoffman, D., Colbert, C. & Johnston, D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu. Rev. Physiol. 60, 327–346 (1998).

    Article  CAS  Google Scholar 

  9. Rubio, M.E. & Wenthold, R.J. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 18, 939–950 (1997).

    Article  CAS  Google Scholar 

  10. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  11. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  Google Scholar 

  12. Fritschy, J.-M., Weinmann, O., Wenzel, A. & Benke, D. Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J. Comp. Neurol. 390, 194–210 (1998).

    Article  CAS  Google Scholar 

  13. Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci. 10, 478–487 (1998).

    Article  CAS  Google Scholar 

  14. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J.-M. & Somogyi, P. Differential synaptic localization of two major γ-aminobutyric acid type A receptor α subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939–11944 (1996).

    Article  CAS  Google Scholar 

  15. Nyiri, G., Freund, T.F. & Somogyi, P. Imput-dependent synaptic targeting of α2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13, 428–442 (2001).

    Article  CAS  Google Scholar 

  16. Nusser, Z., Cull-Candy, S.G. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).

    Article  CAS  Google Scholar 

  17. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).

    Article  CAS  Google Scholar 

  18. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  Google Scholar 

  19. Hu, H. et al. Presynaptic Ca2+ -activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).

    Article  CAS  Google Scholar 

  20. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  21. Bischofberger, J. & Schild, D. Different spatial patterns of [Ca2+] increase caused by N- and L-type Ca2+ channel activation in frog olfactory bulb neurones. J. Physiol. (Lond.) 487, 305–317 (1995).

    Article  CAS  Google Scholar 

  22. Christie, B.R., Eliot, L.S., Ito, K., Miyakawa, H. & Johnston, D. Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J. Neurophysiol. 73, 2553–2557 (1995).

    Article  CAS  Google Scholar 

  23. Stuart, G. & Hausser, M. Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13, 703–712 (1994).

    Article  CAS  Google Scholar 

  24. Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487, 67–90 (1995).

    Article  CAS  Google Scholar 

  25. Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18, 7613–7624 (1998).

    Article  CAS  Google Scholar 

  26. Magee, J.C. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  CAS  Google Scholar 

  27. Williams, S.R. & Stuart, G.J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  Google Scholar 

  28. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  Google Scholar 

  29. Schwindt, P.C. & Crill, W.E. Modification of current transmitted from apical dendrite to soma by blockade of voltage- and Ca2+ -dependent conductances in rat neocortical pyramidal neurons. J. Neurophysiol. 78, 187–198 (1997).

    Article  CAS  Google Scholar 

  30. Berger, T., Larkum, M.E. & Luscher, H.R. High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    Article  CAS  Google Scholar 

  31. Tsubokawa, H., Miura, M. & Kano, M. Elevation of intracellular Na+ induced by hyperpolarization at the dendrites of pyramidal neurones of mouse hippocampus. J. Physiol. (Lond.) 517, 135–142 (1999).

    Article  CAS  Google Scholar 

  32. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  CAS  Google Scholar 

  33. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  Google Scholar 

  34. Hoffman, D.A. & Johnston, D. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J. Neurosci. 18, 3521–3528 (1998).

    Article  CAS  Google Scholar 

  35. Gauss, R., Seifert, R. & Kaupp, U.B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393, 583–587 (1998).

    Article  CAS  Google Scholar 

  36. Santoro, B., Grant, S.G., Bartsch, D. & Kandel, E.R. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA 94, 14815–14820 (1997).

    Article  CAS  Google Scholar 

  37. Monteggia, L.M., Eisch, A.J., Tang, M.D., Kaczmarek, L.K. & Nestler, E.J. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res. Mol. Brain Res. 81, 129–139 (2000).

    Article  CAS  Google Scholar 

  38. Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F. & Biel, M. A family of hyperpolarization-activated mammalian cation channels. Nature 393, 587–591 (1998).

    Article  CAS  Google Scholar 

  39. Chen, S., Wang, J. & Siegelbaum, S.A. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J. Gen. Physiol. 117, 491–504 (2001).

    Article  CAS  Google Scholar 

  40. Seifert, R. et al. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc. Natl. Acad. Sci. USA 96, 9391–9396 (1999).

    Article  CAS  Google Scholar 

  41. Baude, A., Nusser, Z., Molnar, E., McIlhinney, R.A. & Somogyi, P. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69, 1031–1055 (1995).

    Article  CAS  Google Scholar 

  42. Nusser, Z. et al. Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur. J. Neurosci. 7, 630–646 (1995).

    Article  CAS  Google Scholar 

  43. Moosmang, S., Biel, M., Hofmann, F. & Ludwig, A. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol. Chem. 380, 975–980 (1999).

    Article  CAS  Google Scholar 

  44. Bender, R.A. et al. Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1-4 suggests evolving roles in the developing rat hippocampus. Neuroscience 106, 689–698 (2001).

    Article  CAS  Google Scholar 

  45. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  46. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E.H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  47. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  Google Scholar 

  48. Sloviter, R.S., Ali-Akbarian, L., Horvath, K.D. & Menkens, K.A. Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J. Comp. Neurol. 430, 283–305 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.N. received grants from the Hungarian Science Foundation (T032309), the Howard Hughes Medical Institute, the James S. McDonnell Foundation, the Wellcome Trust and the Boehringer Ingelheim Fund. Z.N. and R.S. received grants from CREST—Japan Science and Technology Corporation. G.T. is funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Nusser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lörincz, A., Notomi, T., Tamás, G. et al. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5, 1185–1193 (2002). https://doi.org/10.1038/nn962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing