Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale automated synthesis of human functional neuroimaging data

Abstract

The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of NeuroSynth framework and applications.
Figure 2: Comparison of previous meta-analysis results with forward and reverse inference maps produced automatically using the NeuroSynth framework.
Figure 3: Comparison of forward and reverse inference in regions of interest.
Figure 4: Three-way classification of working memory, emotion and pain.
Figure 5: Accuracy of the naive Bayes classifier when discriminating between all possible pairwise combinations of 25 key terms.

Similar content being viewed by others

References

  1. Derrfuss, J. & Mar, R.A. Lost in localization: the need for a universal coordinate database. Neuroimage 48, 1–7 (2009).

    Article  Google Scholar 

  2. Yarkoni, T. Big correlations in little studies: inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009). Perspect. Psychol. Sci. 4, 294–298 (2009).

    Article  Google Scholar 

  3. Wager, T.D., Lindquist, M. & Kaplan, L. Meta-analysis of functional neuroimaging data: current and future directions. Soc. Cogn. Affect. Neurosci. 2, 150–158 (2007).

    Article  Google Scholar 

  4. Yarkoni, T., Poldrack, R.A., Van Essen, D.C. & Wager, T.D. Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn. Sci. 14, 489–496 (2010).

    Article  Google Scholar 

  5. Van Horn, J.D., Grafton, S.T., Rockmore, D. & Gazzaniga, M.S. Sharing neuroimaging studies of human cognition. Nat. Neurosci. 7, 473–481 (2004).

    Article  CAS  Google Scholar 

  6. Fox, P.T., Parsons, L.M. & Lancaster, J.L. Beyond the single study: function/location metanalysis in cognitive neuroimaging. Curr. Opin. Neurobiol. 8, 178–187 (1998).

    Article  CAS  Google Scholar 

  7. Van Essen, D.C. Lost in localization—but found with foci?! Neuroimage 48, 14–17 (2009).

    Article  Google Scholar 

  8. Laird, A.R. et al. ALE meta-analysis workflows via the BrainMap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics 3, 23 (2009).

    Article  Google Scholar 

  9. Dickson, J., Drury, H.A. & Van Essen, D.C. “The surface management system” (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis. Phil. Trans. R. Soc. Lond. B 356, 1277–1292 (2001).

    Article  CAS  Google Scholar 

  10. Lancaster, J.L. et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).

    Article  Google Scholar 

  11. Nielsen, F.A., Hansen, L.K. & Balslev, D. Mining for associations between text and brain activation in a functional neuroimaging database. Neuroinformatics 2, 369–380 (2004).

    Article  Google Scholar 

  12. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  13. McCandliss, B.D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

    Article  Google Scholar 

  14. Atlas, L.Y., Bolger, N., Lindquist, M.A. & Wager, T.D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30, 12964–12977 (2010).

    Article  CAS  Google Scholar 

  15. Wager, T.D., Lindquist, M.A., Nichols, T.E., Kober, H. & Van Snellenberg, J.X. Evaluating the consistency and specificity of neuroimaging data using meta-analysis. Neuroimage 45, 210–221 (2009).

    Article  Google Scholar 

  16. Kober, H. et al. Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42, 998–1031 (2008).

    Article  Google Scholar 

  17. Poldrack, R.A. Can cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 10, 59–63 (2006).

    Article  Google Scholar 

  18. Zald, D.H. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Brain Res. Rev. 41, 88–123 (2003).

    Article  Google Scholar 

  19. Shackman, A.J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167 (2011).

    Article  CAS  Google Scholar 

  20. Owen, A.M., McMillan, K.M., Laird, A.R. & Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    Article  Google Scholar 

  21. Dosenbach, N.U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    Article  CAS  Google Scholar 

  22. Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  Google Scholar 

  23. Yarkoni, T., Barch, D.M., Gray, J.R., Conturo, T.E. & Braver, T.S. BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS ONE 4, e4257 (2009).

    Article  Google Scholar 

  24. Craig, A.D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

  25. Legrain, V., Iannetti, G.D., Plaghki, L. & Mouraux, A. The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93, 111–124 (2011).

    Article  Google Scholar 

  26. Norman, K.A., Polyn, S.M., Detre, G.J. & Haxby, J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article  Google Scholar 

  27. Mitchell, T.M. et al. Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008).

    Article  CAS  Google Scholar 

  28. Poldrack, R.A., Halchenko, Y.O. & Hanson, S.J. Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychol. Sci. 20, 1364–1372 (2009).

    Article  Google Scholar 

  29. Lewis, D. Naive (Bayes) at forty: The independence assumption in information retrieval. Mach. Learn. ECML-98, 4–15 (1998).

    Google Scholar 

  30. Lang, P.J., Bradley, M.M. & Cuthbert, B.N. International Affective Picture System (IAPS): Instruction Manual and Affective Ratings (Center for Research in Psychophysiology, University of Florida, Gainesville, Florida, USA, 1999).

  31. Van Essen, D.C. & Dierker, D.L. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209–225 (2007).

    Article  CAS  Google Scholar 

  32. Laird, A.R. et al. Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform. Neuroimage 51, 677–683 (2010).

    Article  Google Scholar 

  33. Nigam, K., McCallum, A.K., Thrun, S. & Mitchell, T. Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39, 103–134 (2000).

    Article  Google Scholar 

  34. Van Essen, D.C.A. Population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  Google Scholar 

  35. Langley, P., Iba, W. & Thompson, K. An analysis of Bayesian classifiers. Proceedings of the Tenth National Conference on Artificial Intelligence 223–228 (AAAI Press, Menlo Park, California, USA, 1992).

  36. Mitchell, T.M. et al. Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004).

    Article  Google Scholar 

  37. Cox, D.D. & Savoy, R.L. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

    Article  Google Scholar 

  38. DeYoung, C.G., Shamosh, N.A., Green, A.E., Braver, T.S. & Gray, J.R. Intellect as distinct from openness: differences revealed by fMRI of working memory. J. Pers. Soc. Psychol. 97, 883–892 (2009).

    Article  Google Scholar 

  39. Shamosh, N.A. et al. Individual differences in delay discounting. Psychol. Sci. 19, 904–911 (2008).

    Article  Google Scholar 

  40. McRae, K. et al. The neural bases of distraction and reappraisal. J. Cogn. Neurosci. 22, 248–262 (2010).

    Article  Google Scholar 

  41. Ochsner, K.N. et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23, 483–499 (2004).

    Article  Google Scholar 

  42. Ochsner, K.N., Bunge, S.A., Gross, J.J. & Gabrieli, J.D. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14, 1215–1229 (2002).

    Article  Google Scholar 

  43. Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A. & Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  Google Scholar 

  44. McRae, K., Ochsner, K.N., Mauss, I.B., Gabrieli, J.J.D. & Gross, J.J. Gender differences in emotion regulation: an fMRI study of cognitive reappraisal. Group Process. Intergroup Relat. 11, 143–162 (2008).

    Article  Google Scholar 

  45. Kross, E., Berman, M.G., Mischel, W., Smith, E.E. & Wager, T.D. Social rejection shares somatosensory representations with physical pain. Proc. Natl. Acad. Sci. USA 108, 6270–6275 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Braver (Washington University), J. Gray (Yale University) and K. Ochsner (Columbia University) for data; E. Reid for help with validation analyses; members of the Wager lab for manually coding the pain database; members of the Neuroimaging and Data Access Group (http://nidag.org/), and particularly R. Mar, for suggestions; and R. Bilder, R. Raizada and J. Andrews-Hanna for comments on a draft of this paper. This work was supported by awards from US National Institute of Nursing Research (F32NR012081 to T.Y.), National Institute of Mental Health (R01MH082795 to R.A.P. and R01MH076136 to T.D.W.), US National Institutes of Health (R01MH60974 to D.C.V.E.) and National Institute on Drug Abuse (R01DA027794 and 1RC1DA028608 to T.D.W.).

Author information

Authors and Affiliations

Authors

Contributions

T.Y. conceived the project and carried out most of the software implementation, data analysis and writing. R.A.P. provided data and performed analyses. T.E.N. provided statistical advice, reviewed all statistical procedures and contributed to the implementation of the naive Bayes classifier. D.C.V.E. provided data, contributed to automated data extraction and coordinated data validation. T.D.W. conceived the classification analyses, wrote part of the software, provided data and suggested and performed analyses. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Tal Yarkoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Note (PDF 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarkoni, T., Poldrack, R., Nichols, T. et al. Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8, 665–670 (2011). https://doi.org/10.1038/nmeth.1635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing