Abstract
Liquid crystals are the basis of a pervasive technology of the modern era. Yet, as the display market becomes commoditized, researchers in industry, government and academia are increasingly examining liquid crystalline materials in a variety of polymeric forms and discovering their fascinating and useful properties. In this Review, we detail the historical development of liquid crystalline polymeric materials, with emphasis on the thermally and photogenerated macroscale mechanical responses — such as bending, twisting and buckling — and on local-feature development (primarily related to topographical control). Within this framework, we elucidate the benefits of liquid crystallinity and contrast them with other stimuli-induced mechanical responses reported for other materials. We end with an outlook of existing challenges and near-term application opportunities.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Reinitzer, F. Beiträge zur kenntniss des cholesterins. Monatsh. Chem. 9, 421–441 (1888).
Collings, P. J. & Hird, M. An Introduction to Liquid Crystals: Chemistry and Physics (CRC Press, 1997).
Prasad, S. K. Photostimulated and photosuppressed phase transitions in liquid crystals. Angew. Chem. Int. Ed. 51, 10708–10710 (2012).
Schmidt-Mende, L. et al. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001).
Verbunt, P. P. C. et al. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. Opt. Express 20, A655–A668 (2012).
Li, Q. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012).
Broer, D. J., Crawford, G. P. & Zumer, S. Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers (CRC Press, 2011).
Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nature Mater. 6, 929–938 (2007).
Beyer, P., Terentjev, E. M. & Zentel, R. Monodomain liquid crystal main chain elastomers by photocrosslinking. Macromol. Rapid Commun. 28, 1485–1490 (2007).
Wermter, H. & Finkelmann, H. Liquid crystalline elastomers as artificial muscles. e-Polymers 1, 111–123 (2001).
Urayama, K. Selected issues in liquid crystal elastomers and gels. Macromolecules 40, 2277–2288 (2007).
Urayama, K., Honda, S. & Takigawa, T. Electrically driven deformations of nematic gels. Phys. Rev. E 71, 051713 (2005).
Urayama, K., Honda, S. & Takigawa, T. Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules 39, 1943–1949 (2006).
Vorlander, D. Investigation of the molecular form by means of crystalline liquids. Z. Phys. Chem. 105, 211–254 (1923).
Jackson, W. J. & Kuhfuss, H. F. Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters. J. Polym. Sci. Polym. Chem. 14, 2043–2058 (1976).
Finkelmann, H., Kock, H-J. & Rehage, G. Investigations on liquid crystalline polysiloxanes. 3. Liquid crystalline elastomers — a new type of liquid crystalline material. Macromol. Rapid Commun. 2, 317–322 (1981).
Portugall, M., Ringsdorf, H. & Zentel, R. Synthesis and phase behavior of liquid crystalline polyacrylates. Makromol. Chem. 183, 2311–2321 (1982).
Ringsdorf, H. & Zentel, R. Liquid crystalline side chain polymers and their behavior in the electric field. Makromol. Chem. 183, 1245–1256 (1982).
Küpfer, J. & Finkelmann, H. Nematic liquid single crystal elastomers. Makromol. Chem. Rapid Commun. 12, 717–726 (1991).
Terentjev, E. M. & Warner, M. Liquid Crystal Elastomers (Oxford Univ. Press, 2009).
Warner, M., Bladon, P. & Terentjev, E. “Soft elasticity” — deformation without resistance in liquid crystal elastomers. J. Phys. II 4, 93–102 (1994).
De Gennes, P. G. Possibilites offertes par la reticulation de polymeres en presence d'un cristal liquide. Phys. Lett. 28A, 725–726 (1969).
Li, M-H., Keller, P., Li, B., Wang, X. & Brunet, M. Light-driven side-on nematic elastomer actuators. Adv. Mater. 15, 569–572 (2003).
Buguin, A., Li, M-H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089 (2006).
Li, M-H. & Keller, P. Artificial muscles based on liquid crystal elastomers. Phil. Trans. R. Soc. A 364, 2763–2777 (2006).
Tajbakhsh, A. R. & Terentjev, E. M. Spontaneous thermal expansion of nematic elastomers. Eur. Phys. J. E 6, 181–188 (2001).
Finkelmann, H., Kim, S. T., Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072 (2001).
Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).
Broer, D. J., Boven, J., Mol, G. N. & Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates. 3. Oriented polymer networks from a mesogenic diacrylate. Makromol. Chem. 190, 2255–2268 (1989).
Broer, D. J., Finkelmann, H. & Kondo, K. In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol. Chem. 189, 185–194 (1988).
Broer, D. J., Hikmet, R. A. M. & Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates. 4. Influence of a lateral methyl substituent on monomer and oriented polymer network properties of a mesogenic diacrylate. Makromol. Chem. 190, 3201–3215 (1989).
Broer, D. J., Mol, G. N. & Challa, G. In situ photopolymerization of an oriented liquid-crystalline acrylate. 2. Makromol. Chem. 190, 19–30 (1989).
De Gennes, P. G. in Polymer Liquid Crystals (eds Cifferi, A. et al.) 115–131 (Academic, 1982).
Cotton, J. P. & Hardouin, F. Chain conformation of liquid-crystalline polymers studied by small-angle neutron scattering. Prog. Polym. Sci. 22, 795–828 (1997).
De Gennes, P. G. Réflexions sur un type de polymères nématiques. C. R. Acad. Sci. B281, 101–103 (1975).
Urayama, K., Kohmon, E., Kojima, M. & Takigawa, T. Polydomain−monodomain transition of randomly disordered nematic elastomers with different cross-linking histories. Macromolecules 42, 4084–4089 (2009).
De Gennes, P. G., Hebert, M. & Kant, R. Artificial muscles based on nematic gels. Macromol. Symp. 113, 39–49 (1997).
Hebert, M., Kant, R. & De Gennes, P. G. Dynamics and thermodynamics of artificial muscles based on nematic gels. J. Phys. I 7, 909–919 (1997).
Thomsen, D. L. III . et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875 (2001).
de Jeu, W. H. Liquid Crystal Elastomers: Materials and Applications (Springer, 2012).
Fleischmann, E-K., Ohm, C., Serra, C. & Zentel, R. Preparation of soft microactuators in a continuous flow synthesis using a liquid-crystalline polymer crosslinker. Macromol. Chem. Phys. 213, 1871–1878 (2012).
Evans, J. S. et al. Active shape-morphing elastomeric colloids in short-pitch cholesteric liquid crystals. Phys. Rev. Lett. 110, 187802 (2013).
Rousseau, I. A. & Mather, P. T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003).
Burke, K. A. & Mather, P. T. Soft shape memory in main-chain liquid crystalline elastomers. J. Mater. Chem. 20, 3449–3457 (2010).
Burke, K. A. & Mather, P. T. Evolution of microstructure during shape memory cycling of a main-chain liquid crystalline elastomer. Polymer 54, 2808–2820 (2013).
Zupancic, B., Zalar, B., Remskar, M. & Domenici, V. Actuation of gold-coated liquid crystal elastomers. Appl. Phys. Express 6, 021701 (2013).
Wu, Z. L. et al. Microstructured nematic liquid crystalline elastomer surfaces with switchable wetting properties. Adv. Funct. Mater. 23, 3070–3076 (2013).
Wei, R., He, Y., Wang, X. & Keller, P. Nematic liquid crystalline elastomer grating and microwire fabricated by micro-molding in capillaries. Macromol. Rapid Commun. 34, 330–334 (2013).
Corbett, D. R. & Adams, J. M. Tack energy and switchable adhesion of liquid crystal elastomers. Soft Matter 9, 1151–1163 (2013).
Hikmet, R. A. M. & Broer, D. J. Dynamic mechanical properties of anisotropic networks formed by liquid-crystalline acrylates. Polymer 32, 1627–1632 (1991).
Broer, D. J., Mol, G. N. & Challa, G. In-situ photopolymerization of oriented liquid-crystalline acrylates. 5. Influence of the alkylene spacer on the properties of the mesogenic monomers and the formation and properties of oriented polymer networks. Makromol. Chem. 192, 59–74 (1991).
Broer, D. J. & Mol, G. N. Anisotropic thermal expansion of densely crosslinked oriented polymer networks. Polym. Eng. Sci. 31, 625–631 (1991).
Hikmet, R. A. M., Zwerver, B. H. & Broer, D. J. Anisotropic polymerization shrinkage behavior of liquid-crystalline diacrylates. Polymer 33, 89–95 (1992).
Wie, J. J., Lee, K. M., Ware, T. H. & White, T. J. Twists and turns in glassy, liquid crystalline polymer networks. Macromolecules 48, 1087–1092 (2015).
Mol, G. N., Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15, 1155–1159 (2005).
Harris, K. D., Bastiaansen, C. W. M., Lub, J. & Broer, D. J. Self-assembled polymer films for controlled agent-driven motion. Nano Lett. 5, 1857–1860 (2005).
Lee, K. M., Bunning, T. J. & White, T. J. Autonomous, hands-free shape memory in glassy, liquid crystalline polymer networks. Adv. Mater. 24, 2839–2843 (2012).
Sawa, Y. et al. Shape selection of twist-nematic-elastomer ribbons. Proc. Natl Acad. Sci. USA 108, 6364–6368 (2011).
Sawa, Y. et al. Shape and chirality transitions in off-axis twist nematic elastomer ribbons. Phys. Rev. E 88, 022502 (2013).
Ohm, C. et al. Preparation of actuating fibers of oriented main-chain liquid crystalline elastomers by a wet spinning process. Soft Matter 7, 3730–3734 (2011).
Ikeda, T. & Zhao, Y. Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals (Wiley, 2009).
Corbett, D. & Warner, M. Changing liquid crystal elastomer ordering with light — a route to opto-mechanically responsive materials. Liq. Cryst. 36, 1263–1280 (2009).
Ikeda, T., Mamiya, J-I. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).
Ikeda, T. & Ube, T. Photomobile polymer materials: from nano to macro. Mater. Today 14, 480–487 (October, 2011).
Koerner, H., White, T. J., Tabiryan, N. V., Bunning, T. J. & Vaia, R. A. Photogenerating work from polymers. Mater. Today 11, 34–42 (July–August, 2008).
White, T. J. Light to work transduction and shape memory in glassy, photoresponsive macromolecular systems: trends and opportunities. J. Polym. Sci. B 50, 877–880 (2012).
Eisenbach, C. D. Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer 21, 1175–1179 (1980).
Agolini, F. & Gay, F. P. Synthesis and properties of azoaromatic polymers. Macromolecules 3, 349–351 (1970).
Finkelmann, H., Nishikawa, E., Pereira, G. G. & Warner, M. A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 015501 (2001).
Sanchez-Ferrer, A., Merekalov, A. & Finkelmann, H. Opto-mechanical effect in photoactive nematic side-chain liquid-crystalline elastomers. Macromol. Rapid Commun. 32, 671–678 (2011).
Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid crystal elastomer swims in the dark. Nature Mater. 3, 307–310 (2004).
Cviklinski, J., Tajbakhsh, A. R. & Terentjev, E. M. UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur. Phys. J. E 9, 427–434 (2002).
Hogan, P. M., Tajbakhsh, A. R. & Terentjev, E. M. UV manipulation of order and macroscopic shape in nematic elastomers. Phys. Rev. E 65, 041720 (2002).
Warner, M. & Mahadevan, L. Photoinduced deformations of beams, plates, and films. Phys. Rev. Lett. 92, 134302 (2004).
Corbett, D. & Warner, M. Nonlinear photoresponse of disordered elastomers. Phys. Rev. Lett. 96, 237802 (2006).
Corbett, D. & Warner, M. Linear and nonlinear photoinduced deformations of cantilevers. Phys. Rev. Lett. 99, 174302 (2007).
Corbett, D. & Warner, M. Bleaching and stimulated recovery of dyes and of photocantilevers. Phys. Rev. E 77, 051710 (2008).
Corbett, D. & Warner, M. Polarization dependence of optically driven polydomain elastomer mechanics. Phys. Rev. E 78, 061701 (2008).
Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. Thermally induced and photoinduced mechanical effects in molecular single crystals — a revival. CrystEngComm 16, 1850–1858 (2014).
Kim, T., Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Organic photomechanical materials. ChemPhysChem 15, 400–414 (2014).
Yu, Y., Nakano, M. & Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 425, 145 (2003).
Yamada, M. et al. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008).
Lee, K. M. & White, T. J. Photochemical mechanism and photothermal considerations in the mechanical response of monodomain, azobenzene-functionalized liquid crystal polymer networks. Macromolecules 45, 7163–7170 (2012).
Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).
Tabiryan, N., Serak, S., Dai, X-M. & Bunning, T. Polymer film with optically controlled form and actuation. Opt. Express 13, 7442–7448 (2005).
Lee, K. M., Tabiryan, N. V., Bunning, T. J. & White, T. J. Photomechanical mechanism and structure–property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks. J. Mater. Chem. 22, 691–698 (2012).
Serak, S., Tabiryan, N., White, T. J., Vaia, R. A. & Bunning, T. J. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6, 779–783 (2010).
White, T. J. et al. High frequency photodriven polymer oscillator. Soft Matter 4, 1796–1798 (2008).
Yoshino, T. et al. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 22, 1361–1363 (2010).
Wu, W. et al. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 133, 15810–15813 (2011).
White, T. J., Serak, S. V., Tabiryan, N. V., Vaia, R. A. & Bunning, T. J. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J. Mater. Chem. 19, 1080–1085 (2009).
Lee, K. M., Koerner, H., Vaia, R. A., Bunning, T. J. & White, T. J. Light-activated shape memory of glassy azobenzene liquid crystal polymer networks. Soft Matter 7, 4318–4324 (2011).
Mamiya, J-i., Yoshitake, A., Kondo, M., Yu, Y. & Ikeda, T. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J. Mater. Chem. 18, 63–65 (2008).
Kondo, M. et al. Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J. Mater. Chem. 20, 117–122 (2010).
Lee, K. M., Koerner, H., Vaia, R. A., Bunning, T. J. & White, T. J. Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks. Macromolecules 43, 8185–8190 (2010).
Lee, K. M. et al. Photodriven, flexural-torsional oscillations of glassy azobenzene liquid crystal polymer networks. Adv. Funct. Mater. 15, 2913–2918 (2011).
van Oosten, C. L., Harris, K. D., Bastiaansen, C. W. M. & Broer, D. J. Glassy photomechanical liquid-crystal network actuators for microscale devices. Eur. Phys. J. E 23, 329–336 (2007).
Wie, J. J., Lee, K. M., Smith, M. L., Vaia, R. A. & White, T. J. Torsional mechanical responses in azobenzene functionalized liquid crystalline polymer networks. Soft Matter 9, 9303–9310 (2013).
Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).
Warner, M. & Terentjev, E. Thermal and photo-actuation in nematic elastomers. Macromol. Symp. 200, 81–92 (2003).
Harvey, C. L. M. & Terentjev, E. M. Role of polarization and alignment in photoactuation of nematic elastomers. Eur. Phys. J. E 23, 185–189 (2007).
Hon, K. K., Corbett, D. & Terentjev, E. M. Thermal diffusion and bending kinetics in nematic elastomer cantilever. Eur. Phys. J. E 25, 83–89 (2008).
Dawson, N. J., Kuzyk, M. G., Neal, J., Luchette, P. & Palffy-Muhoray, P. Modeling the mechanisms of the photomechanical response of a nematic liquid crystal elastomer. J. Opt. Soc. Am. B 28, 2134–2141 (2011).
Dawson, N. J., Kuzyk, M. G., Neal, J., Luchette, P. & Palffy-Muhoray, P. Experimental studies of the mechanisms of photomechanical effects in a nematic liquid crystal elastomer. J. Opt. Soc. Am. B 28, 1916–1921 (2011).
Courty, S., Mine, J., Tajbakhsh, A. R. & Terentjev, E. M. Nematic elastomers with aligned carbon nanotubes: new electromechanical actuators. Europhys. Lett. 64, 654–660 (2003).
Koerner, H., Price, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites — stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater. 3, 115–120 (2004).
Ahir, S. V. & Terentjev, E. M. Photomechanical actuation in polymer–nanotube composites. Nature Mater. 4, 491–495 (2005).
Ahir, S. V. & Terentjev, E. M. Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Lett. 96, 133902 (2006).
Ahir, S. V., Squires, A. M., Tajbakhsh, A. R. & Terentjev, E. M. Infrared actuation in aligned polymer–nanotube composites. Phys. Rev. B 73, 085420 (2006).
Marshall, J. E., Ji, Y., Torras, N., Zinoviev, K. & Terentjev, E. M. Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter 8, 1570–1574 (2012).
Torras, N., Zinoviev, K. E., Marshall, J. E., Terentjev, E. M. & Esteve, J. Bending kinetics of a photo-actuating nematic elastomer cantilever. Appl. Phys. Lett. 99, 254102 (2011).
Campo, E. M. et al. Nano opto-mechanical systems (NOMS) as a proposal for tactile displays. Proc. SPIE 8107, 81070H (2011).
Camargo, C. J. et al. Microstamped opto-mechanical actuator for tactile displays. Proc. SPIE 8107, 810709 (2011).
Camargo, C. J. et al. Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers. Macromol. Rapid Commun. 32, 1953–1959 (2011).
Ji, Y., Huang, Y. Y., Rungsawang, R. & Terentjev, E. M. Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv. Mater. 22, 3436–3440 (2010).
Li, C., Liu, Y., Lo, C-w. & Jiang, H. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter 7, 7511–7516 (2011).
Yang, L., Setyowati, K., Li, A., Gong, S. & Chen, J. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv. Mater. 20, 2271–2275 (2008).
Kaiser, A., Winkler, M., Krause, S., Finkelmann, H. & Schmidt, A. M. Magnetoactive liquid crystal elastomer nanocomposites. J. Mater. Chem. 19, 538–543 (2009).
Winkler, M., Kaiser, A., Krause, S., Finkelmann, H. & Schmidt, A. M. Liquid crystal elastomers with magnetic actuation. Macromol. Symp. 291–292, 186–192 (2010).
Zhou, Y. et al. Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers. J. Am. Chem. Soc. 134, 1630–1641 (2012).
Petsch, S. et al. A thermotropic liquid crystal elastomer micro-actuator with integrated deformable micro-heater. IEEE 27th Int. Conf. Micro Electro Mechanical Sys. 905–908 (2014).
Chambers, M. et al. Liquid crystal elastomer–nanoparticle systems for actuation. J. Mater. Chem. 19, 1524–1531 (2009).
Liu, D. & Broer, D. J. Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion. Angew. Chem. Int. Ed. 53, 4542–4546 (2014).
Liu, D., Bastiaansen, C. W. M., den Toonder, J. M. J. & Broer, D. J. Photo-switchable surface topologies in chiral nematic coatings. Angew. Chem. Int. Ed. 51, 892–896 (2012).
Liu, D., Bastiaansen, C. W. M., den Toonder, J. M. J. & Broer, D. J. (Photo-)thermally induced formation of dynamic surface topographies in polymer hydrogel networks. Langmuir 29, 5622–5629 (2013).
Stumpel, J. E., Broer, D. J. & Schenning, A. P. H. J. Stimuli-responsive photonic polymer coatings. Chem. Commun. 50, 15839–15848 (2014).
Liu, D. & Broer, D. J. Liquid crystal polymer networks: preparation, properties, and applications of films with patterned molecular alignment. Langmuir 30, 13499–13509 (2014).
de Haan, L. T. et al. Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24, 1251–1258 (2014).
Modes, C. D., Bhattacharya, K. & Warner, M. Disclination-mediated thermo-optical response in nematic glass sheets. Phys. Rev. E 81, 060701 (2010).
Modes, C. D. & Warner, M. Blueprinting nematic glass: systematically constructing and combining active points of curvature for emergent morphology. Phys. Rev. E 84, 021711 (2011).
Modes, C. D. & Warner, M. Responsive nematic solid shells: topology, compatibility, and shape. EPL 97, 36007 (2012).
Modes, C. D. & Warner, M. The activated morphology of grain boundaries in nematic solid sheets. Proc. SPIE 8279, 82790Q (2012).
Modes, C. D., Warner, M., Sanchez-Somolinos, C., de Haan, L. T. & Broer, D. Mechanical frustration and spontaneous polygonal folding in active nematic sheets. Phys. Rev. E 86, 060701 (2013).
de Haan, L. T., Sanchez-Somolinos, C., Bastiaansen, C. M. W., Schenning, A. P. H. J. & Broer, D. J. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. 51, 12469–12472 (2012).
McConney, M. E. et al. Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv. Mater. 25, 5880–5885 (2013).
Pei, Z. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Mater. 13, 36–41 (2014).
Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).
Yang, Z., Huck, W. T. S., Clarke, S. M., Tajbakhsh, A. R. & Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nature Mater. 4, 486–490 (2005).
Ahir, S. V., Tajbakhsh, A. R. & Terentjev, E. M. Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv. Funct. Mater. 16, 556–560 (2006).
Qin, H. & Mather, P. T. Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009).
Ahn, S-k. & Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543–4549 (2011).
Schuhladen, S. et al. Iris-like tunable aperture employing liquid-crystal elastomers. Adv. Mater. 26, 7247–7251 (2014).
Chen, M. et al. Photodeformable CLCP material: study on photo-activated microvalve applications. Appl. Phys. A 102, 667–672 (2011).
van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).
Hiscock, T., Warner, M. & Palffy-Muhoray, P. Solar to electrical conversion via liquid crystal elastomers. J. Appl. Phys. 109, 104506 (2011).
Li, C., Liu, Y., Huang, X. & Jiang, H. Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv. Funct. Mater. 22, 5166–5174 (2012).
Yin, R. et al. Can sunlight drive the photoinduced bending of polymer films? J. Mater. Chem. 19, 3141–3143 (2009).
Camargo, C. J. et al. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays. J. Micromech. Microeng. 22, 075009 (2012).
Torras, N. et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sensor. Actuat. A 208, 104–112 (2014).
Zupan, M., Ashby, M. F. & Fleck, N. A. Actuator classification and selection — the development of a database. Adv. Eng. Mater. 4, 933–940 (2002).
Acknowledgements
T.J.W. acknowledges the support of the Air Force Office of Scientific Research and of the Materials and Manufacturing Directorate of the Air Force Research Laboratory.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
White, T., Broer, D. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Mater 14, 1087–1098 (2015). https://doi.org/10.1038/nmat4433
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4433
This article is cited by
-
Geometric phase-encoded stimuli-responsive cholesteric liquid crystals for visualizing real-time remote monitoring: humidity sensing as a proof of concept
Light: Science & Applications (2024)
-
Photo-responsive functional materials based on light-driven molecular motors
Light: Science & Applications (2024)
-
The Spectral Characterization of Novel Spacecraft Materials in the Low Earth Orbit Environment
The Journal of the Astronautical Sciences (2024)
-
Bidirectional Reflectance Distribution Function (BRDF) Measurement of Materials Aged Under Simulated Space Environment
The Journal of the Astronautical Sciences (2024)
-
Theoretical study of chaotic jumping of liquid crystal elastomer ball under periodic illumination
Nonlinear Dynamics (2024)