Abstract
Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500–1,000 °C. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or anode. In terms of mitigating global warming, the ability of the SOFC to use commonly available fuels at high efficiency, promises an effective and early reduction in carbon dioxide emissions, and hence is one of the lead new technologies for improving the environment. Here, we discuss recent developments of SOFC fuel electrodes that will enable the better use of readily available fuels.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Baur, E. & Preis, H. Uber die Eisenoxyd-Kathode in der Kohle-Luft-Kette. Z. Elektrochem. 43, 727 (1937).
Möbius, H.-H. On the history of solid electrolyte fuel cells. J. Solid State Electrochem. 1, 2 (1997).
Spacil, H.S. Electrical device including nickel-containing stabilized zirconia electrode. US Patent 3,558,360 (1970).
Lee, J.H. et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet. Solid State Ionics 148, 1–2 (2002).
Toebes, M.L., Bitter, J.H., van Dillen, A.J. & de Jong, K.P. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal. Today 76, 33–42 (2002).
Sasaki, K. & Teraoka, Y. Equilibria in fuel cell gases - I. Equilibrium compositions and reforming conditions. J. Electrochem. Soc. 150, A878–A884 (2003).
Murray, E.P., Tsai, T. & Barnett, S.A. A direct-methane fuel cell with a ceria-based anode Nature 400, 649–651 (1999).
Mogensen, M., Jensen, K.V., Jorgensen, M.J. & Primdahl, S. Progress in understanding SOFC electrodes. Solid State Ionics 150, 123–129 (2002).
Lu, X.Y., Faguy, P.W. & Liu, M.l. In situ potential-dependent FTIR emission spectroscopy - A novel probe for high temperature fuel cell interfaces. J. Electrochem. Soc. 149, A1293–A1298 (2002).
Bernardo, C.A., Alstrup, I. & Rostrupnielsen, J.R. Carbon deposition and methane steam reforming on silica-supported Ni-Cu catalysts. J. Catal. 96, 517–534 (1985).
Dong, W.S., Roh, H.S., Jun, K.W., Park, S.E. & Oh, Y.S. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl. Catal. A 226, 63–72 (2002).
Bunluesin, T., Gorte, R.J. & Graham, G.W. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl. Catal. B 15, 107–114 (1998).
Sharma, S., Hilaire, S., Vohs, J.M., Gorte, R.J. & Jen, H.W. Evidence for oxidation of ceria by CO2 . J. Catal. 190, 199–204 (2000).
Ramirez-Cabrera, E., Atkinson, A. & Chadwick, D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis. Solid State Ionics 136, 825–831 (2000).
Marina, O.A. & Mogensen, M. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode. Appl. Catal. A 189, 117–126 (1999).
Park, S.D., Vohs, J.M. & Gorte, R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).
Kiratzis, N., Holtappels, P., Hatchwell, C.E., Mogensen, M. & Irvine, J.T.S. Preparation and characterisation of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes. Fuel Cells 1, 211–218 (2001).
Kim, H., Park, S., Vohs, J.M. & Gorte, R.J. Direct oxidation of liquid fuels in a solid oxide fuel cell. J. Electrochem. Soc. 148, A693–A695 (2001).
Minh, N.Q. Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993).
Yokokawa, H., Sakai, N., Kawada, T. & Dokiya, M., Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52, 43–56 (1992).
Pudmich, G. et al. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ionics 135, 433–438 (2000).
Tao, S. & Irvine, J.T.S. A redox-stable, efficient anode for solid-oxide fuel cells. Nature Mater. 2, 320–323 (2003).
Vernoux, P., Guillodo, M., Fouletier, J. & Hammou, A. Alternative anode materials for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135, 425–431 (2000).
Sfeir, J. et al. Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anode. J. Catal. 202, 229–244 (2001).
Sfeir, J. Van herle, J. & Vasquez, R. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) 570–577 (European SOFC Forum, Switzerland, 2002).
Sauvet, A.L. & Irvine, J.T.S. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans J.) 490–498 (European SOFC Forum, Switzerland 2002).
Slater, P.R., Fagg, D.P. & Irvine, J.T.S. Synthesis and electrical characterisation of the doped perovskite titanates as potential anode materials for solid oxide fuel cells. J. Mater. Chem. 7, 2495–2498 (1997).
Hui, S.Q. & Petric, A., Electrical properties of yttrium-doped strontium titanate under reducing conditions. J. Electrochem. Soc. 149, J1–J10 (2002).
Marina, O.A. & Pederson, L.R. in Proc. 5th European Solid Oxide Fuel Cell Forum (ed. Huijsmans, J.) 481–489 (European SOFC Forum, Switzerland, 2002).
Canales-Vázquez, J., Tao, S.W. & Irvine, J.T.S. Electrical properties in La2Sr4Ti6O19-d: a Potential anode for high temperature fuel cells solid state ionics. 159, 159–165 (2003).
Reich, C., Kaiser, A. & Irvine, J.T.S. Niobia based rutile materials as sofc anodes, fuel cells - from fundamentals to systems. 1, 249–255 (2001).
Ramos, T. & Atkinson, A. in Ionic and Mixed Conducting Ceramics IV (eds Ramanarayanan, T.A., Worrell, W.L. & Mogensen, M.) 352–367 (Electrochemical Scociety Proceedings Volume PV2001-28, 2001).
Steele, B.C.H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129, 95–110 (2000).
Wang, S.R., Kobayashi, T., Dokiya, M. & Hashimoto, T. Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147, 3606–3609 (2000).
Floyd, J.M. Interpretation of transport phenomena in non-stoichiometric ceria. J. Ind. Technol. 275–280 (1972).
Tao, S. & Irvine, J.T.S. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. J. Solid State Chem. 165, 12–18 (2002).
Sauvet, A.-L. & Fouletier, J. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature. J. Power Sources 101, 259–266 (2001).
Sprague, J.J. & Tuller, H.L. Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate. J. Europ. Ceram. Soc. 19, 803–806 (1999).
Holtappels, P., Poulsen, F.W. & Mogensen, M. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 135, 675–679 (2000).
McIntosh, S., Vohs, J.M. & Gorte, R.J. Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs. J. Electrochem. Soc. 150, A470–A476 (2003).
Lu, C., Worrell, W.L., Vohs, J.M. & Gorte, R.J. in Solid Oxide Fuel Cells VIII (eds Singhal. S. C. & Dokiya, M.) 773–780 (Electrochemical Society Proceedings Volume 2003-07, 2003)
Lu, C., Worrell, W.L., Gorte, R.J. & Vohs, J.M., SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. J. Electrochem. Soc. 150, A354–A358 (2003).
Sfeir, J. Alternative Anode Materials for Methane Oxidation in Solid Oxide Fuel Cells Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2001).
Liu, J., Madsen, B.D., Ji, Z.Q. & Barnett, S.A. A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem. Solid State Lett. 5, A122–A124 (2002).
Sauvet, A.L. & Fouletier, J. Electrochemical properties of a new type of anode material La1-xSrxCr1-yRuyO3-δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim. Acta 47, 987–995 (2001).
Vernoux, P., Guindet, J. & Kleitz, M. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. J. Electrochem. Soc. 145, 3487–3492 (1998).
Skarmoutsos, D., Teitz, F. & Nikolopoulos, P. Structure - property relationships of Ni/YSZ and Ni/(YSZ+TiO2) cermets. Fuel Cells 1, 243–248 (2001).
Holtappels, P. Electrocatalysis on Nickel-Cermet E,lectrodes Jülich Research Centre Report number 3414, and Thesis, Univ. Bonn (1997).
Kiratzis, N., Holtappels, P., Hatchwell, C.E., Mogensen, M. & Irvine, J.T.S. Preparation and characterisation of copper/yttria titania zirconia cermets for use as possible solid oxide fuel cell anodes. Fuel Cells 1, 211–218 (2001).
Acknowledgements
This manuscript is the result of an intense and highly enjoyable workshop organized in Strasbourg, France, December 2002, under the auspices of the European Science Foundation OSSEP programme with support from the US Department of Energy and National Science Foundation. We thank Shanwen Tao (St Andrews) Philippe Stevens (EIER), Jan Van Herle (EPFL) Frank Tietz (Jülich), Jorge Frade (Aveiro), Axel Müller (Karlsruhe), Jan Pieter Ouweltjes (ECN) Anil Virkar (Utah), Olga Marina (PNNL), Truls Norby (Oslo), Tony Petric (McMaster), Elisabeth Siebert (Grenoble), Joseph Sfeir (HTceramix), Wayne Worrell (Pennsylvania), Stuart Adler (Washington), Tatsuya Kawada (Tohoku), Meilin Liu (Georgia), Nguyen Minh (GE) and Anne-Laure Sauvet (Grenoble) for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Atkinson, A., Barnett, S., Gorte, R. et al. Advanced anodes for high-temperature fuel cells. Nature Mater 3, 17–27 (2004). https://doi.org/10.1038/nmat1040
Issue Date:
DOI: https://doi.org/10.1038/nmat1040
This article is cited by
-
In3+-doped Sr2Fe1.5Mo0.5O6−δ cathode with improved performance for an intermediate-temperature solid oxide fuel cell
Nano Research (2024)
-
Exploring the charge storage mechanism in high-performance Co@MnO2-based hybrid supercapacitors using Randles–Ševčík and Dunn’s models
Journal of Applied Electrochemistry (2024)
-
Impact of alumina powder bed on hardness and fracture toughness in the sintering process of NiO-GDC-Bi2O3 composite prepared by sol-gel method
Journal of Sol-Gel Science and Technology (2024)
-
Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy
Nature Communications (2023)
-
Effect of chromium doping on structural development and electrical properties of LaNiO3 perovskites
Journal of Electroceramics (2023)