Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug discovery with explainable artificial intelligence

Abstract

Deep learning bears promise for drug discovery, including advanced image analysis, prediction of molecular structure and function, and automated generation of innovative chemical entities with bespoke properties. Despite the growing number of successful prospective applications, the underlying mathematical models often remain elusive to interpretation by the human mind. There is a demand for ‘explainable’ deep learning methods to address the need for a new narrative of the machine language of the molecular sciences. This Review summarizes the most prominent algorithmic concepts of explainable artificial intelligence, and forecasts future opportunities, potential applications as well as several remaining challenges. We also hope it encourages additional efforts towards the development and acceptance of explainable artificial intelligence techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Feature attribution methods.
Fig. 2: Instance-based model interpretation.
Fig. 3: Graph-based model interpretation.
Fig. 4: Uncertainty estimation.

Similar content being viewed by others

References

  1. Gawehn, E., Hiss, J. A. & Schneider, G. Deep learning in drug discovery. Mol. Inform. 35, 3–14 (2016).

    Google Scholar 

  2. Zhang, L., Tan, J., Han, D. & Zhu, H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov. Today 22, 1680–1685 (2017).

    Google Scholar 

  3. Muratov, E. N. et al. QSAR without borders. Chem. Soc. Rev. 49, 3525–3564 (2020).

    Google Scholar 

  4. Lenselink, E. B. et al. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminform. 9, 45 (2017).

    Google Scholar 

  5. Goh, G. B., Siegel, C., Vishnu, A., Hodas, N. O. & Baker, N. Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. Preprint at https://arxiv.org/abs/1706.06689 (2017).

  6. Unterthiner, T. et al. Deep learning as an opportunity in virtual screening. In Proc. Deep Learning Workshop at NIPS 27, 1–9 (NIPS, 2014).

  7. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inform. 37, 1700153 (2018).

    Google Scholar 

  8. Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Google Scholar 

  9. Schwaller, P., Gaudin, T., Lanyi, D., Bekas, C. & Laino, T. ‘Found in translation’: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci. 9, 6091–6098 (2018).

    Google Scholar 

  10. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Google Scholar 

  11. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    Google Scholar 

  12. Öztürk, H., Özgür, A. & Ozkirimli, E. DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 34, i821–i829 (2018).

    Google Scholar 

  13. Jimenez, J. et al. Pathwaymap: molecular pathway association with self-normalizing neural networks. J. Chem. Inf. Model. 59, 1172–1181 (2018).

    Google Scholar 

  14. Marchese Robinson, R. L., Palczewska, A., Palczewski, J. & Kidley, N. Comparison of the predictive performance and interpretability of random forest and linear models on benchmark data sets. J. Chem. Inf. Model. 57, 1773–1792 (2017).

    Google Scholar 

  15. Webb, S. J., Hanser, T., Howlin, B., Krause, P. & Vessey, J. D. Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity. J. Cheminform. 6, 8 (2014).

    Google Scholar 

  16. Grisoni, F., Consonni, V. & Ballabio, D. Machine learning consensus to predict the binding to the androgen receptor within the CoMPARA project. J. Chem. Inf. Model. 59, 1839–1848 (2019).

    Google Scholar 

  17. Chen, Y., Stork, C., Hirte, S. & Kirchmair, J. NP-scout: machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules 9, 43 (2019).

    Google Scholar 

  18. Riniker, S. & Landrum, G. A. Similarity maps—a visualization strategy for molecular fingerprints and machine-learning methods. J. Cheminform. 5, 43 (2013).

    Google Scholar 

  19. Marcou, G. et al. Interpretability of sar/qsar models of any complexity by atomic contributions. Mol. Inform. 31, 639–642 (2012).

    Google Scholar 

  20. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Google Scholar 

  21. Gupta, M., Lee, H. J., Barden, C. J. & Weaver, D. F. The blood–brain barrier (BBB) score. J. Med. Chem. 62, 9824–9836 (2019).

    Google Scholar 

  22. Rankovic, Z. CNS physicochemical property space shaped by a diverse set of molecules with experimentally determined exposure in the mouse brain: miniperspective. J. Med. Chem. 60, 5943–5954 (2017).

    Google Scholar 

  23. Leeson, P. D. & Young, R. J. Molecular property design: does everyone get it? ACS Med. Chem. Lett. 6, 722–725 (2015).

    Google Scholar 

  24. Fujita, T. & Winkler, D. A. Understanding the roles of the “two QSARs”. J. Chem. Inf. Model. 56, 269–274 (2016).

    Google Scholar 

  25. Schneider, P. et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 19, 353–364 (2020).

    Google Scholar 

  26. Hirst, J. D., King, R. D. & Sternberg, M. J. Quantitative structure–activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines. J. Comput. Aided Mol. Des. 8, 405–420 (1994).

    Google Scholar 

  27. Fiore, M., Sicurello, F. & Indorato, G. An integrated system to represent and manage medical knowledge. Medinfo. 8, 931–933 (1995).

    Google Scholar 

  28. Goebel, R. et al. Explainable AI: the new 42? In Machine Learning and Knowledge Extraction. CD-MAKE 2018. Lecture Notes in Computer Science Vol. 11015 (eds Holzinger, A., Kieseberg, P., Tjoa, A. & Weippl, E) (Springer, 2018).

  29. Lipton, Z. C. The mythos of model interpretability. Queue 16, 31–57 (2018).

    Google Scholar 

  30. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019).

    MathSciNet  MATH  Google Scholar 

  31. Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. Preprint at https://arxiv.org/abs/1702.08608 (2017).

  32. Lapuschkin, S. et al. Unmasking clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019).

    Google Scholar 

  33. Miller, T. Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019).

    MathSciNet  MATH  Google Scholar 

  34. Chander, A., Srinivasan, R., Chelian, S., Wang, J. & Uchino, K. Working with beliefs: AI transparency in the enterprise. In Joint Proceedings of the ACM IUI 2018 Workshops co-located with the 23rd ACM Conference on Intelligent User Interfaces 2068 (eds Said, A. & Komatsu, T.) (CEUR-WS.org, 2018).

  35. Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 93 (2018).

    Google Scholar 

  36. Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839 (2020).

    Google Scholar 

  37. Bendassolli, P. F. Theory building in qualitative research: reconsidering the problem of induction. Forum Qual. Soc. Res. 14, 20 (2013).

    Google Scholar 

  38. Schneider, P. & Schneider, G. De novo design at the edge of chaos: .iniperspective. J. Med. Chem. 59, 4077–4086 (2016).

    Google Scholar 

  39. Liao, Q. V., Gruen, D. & Miller, S. Questioning the AI: informing design practices for explainable AI user experiences. In Proc. 2020 CHI Conference on Human Factors in Computing Systems, CHI ‘20 1–15 (ACM, 2020).

  40. Sheridan, R. P. Interpretation of QSAR models by coloring atoms according to changes in predicted activity: how robust is it? J. Chem. Inf. Model. 59, 1324–1337 (2019).

    Google Scholar 

  41. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S. & Unterthiner, T. in Interpretable Deep Learning in Drug Discovery (eds Samek W. et al.) 331–345 (Springer, 2019).

  42. Xu, Y., Pei, J. & Lai, L. Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J. Chem. Inf. Model. 57, 2672–2685 (2017).

    Google Scholar 

  43. Ciallella, H. L. & Zhu, H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 32, 536–547 (2019).

    Google Scholar 

  44. Dey, S., Luo, H., Fokoue, A., Hu, J. & Zhang, P. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinform. 19, 476 (2018).

    Google Scholar 

  45. Kutchukian, P. S. et al. Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery. PLoS ONE 7, e48476 (2012).

    Google Scholar 

  46. Boobier, S., Osbourn, A. & Mitchell, J. B. Can human experts predict solubility better than computers? J. Cheminform. 9, 63 (2017).

    Google Scholar 

  47. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning Vol. 70, 3319–3328 (JMLR.org, 2017).

  48. Smilkov, D., Thorat, N., Kim, B., Viégas, F. & Wattenberg, M. Smoothgrad: Removing noise by adding noise. Preprint at https://arxiv.org/abs/1706.03825 (2017).

  49. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    MATH  Google Scholar 

  50. Adebayo, J. et al. Sanity checks for saliency maps. Adv. Neural Inf. Processing. Syst . 31, 9505–9515 (2018).

    Google Scholar 

  51. Lipovetsky, S. & Conklin, M. Analysis of regression in game theory approach. Appl. Stoch. Models Bus. Ind. 17, 319–330 (2001).

    MathSciNet  MATH  Google Scholar 

  52. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  53. Ribeiro, M. T., Singh, S. & Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1135–1144 (ACM, 2016).

  54. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In Proc. 34th International Conference on Machine Learning Vol. 70, 3145–3153 (JMLR.org, 2017).

  55. Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, 1–46 (2015).

    Google Scholar 

  56. Lakkaraju, H., Kamar, E., Caruana, R. & Leskovec, J. Interpretable & explorable approximations of black box models. Preprint at https://arxiv.org/abs/1707.01154 (2017).

  57. Deng, H. Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7, 277–287 (2019).

    Google Scholar 

  58. Bastani, O., Kim, C. & Bastani, H. Interpreting blackbox models via model extraction. Preprint at https://arxiv.org/abs/1705.08504 (2017).

  59. Maier, H. R. & Dandy, G. C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 32, 1013–1022 (1996).

    Google Scholar 

  60. Balls, G., Palmer-Brown, D. & Sanders, G. Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks. New Phytol. 132, 271–280 (1996).

    Google Scholar 

  61. Štrumbelj, E., Kononenko, I. & Šikonja, M. R. Explaining instance classifications with interactions of subsets of feature values. Data Knowl. Eng. 68, 886–904 (2009).

    Google Scholar 

  62. Fong, R. C. & Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In Proc. IEEE International Conference on Computer Vision 3429–3437 (IEEE, 2017).

  63. Olden, J. D. & Jackson, D. A. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154, 135–150 (2002).

    Google Scholar 

  64. Zintgraf, L. M., Cohen, T. S., Adel, T. & Welling, M. Visualizing deep neural network decisions: prediction difference analysis. Preprint at https://arxiv.org/abs/1702.04595 (2017).

  65. Ancona, M., Ceolini, E., Öztireli, C. & Gross, M. Towards better understanding of gradient-based attribution methods for deep neural networks. Preprint at https://arxiv.org/abs/1711.06104 (2017).

  66. McCloskey, K., Taly, A., Monti, F., Brenner, M. P. & Colwell, L. J. Using attribution to decode binding mechanism in neural network models for chemistry. Proc. Natl Acad. Sci. USA 116, 11624–11629 (2019).

    Google Scholar 

  67. Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E. & Hoffmann, H. Explainability methods for graph convolutional neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 10772–10781 (IEEE, 2019).

  68. Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. In Pro. IEEE International Conference on Computer Vision 618–626 (IEEE, 2017).

  69. Zhang, J. et al. Top-down neural attention by excitation backprop. Int. J. Comput. Vis. 126, 1084–1102 (2018).

    Google Scholar 

  70. Tice, R. R., Austin, C. P., Kavlock, R. J. & Bucher, J. R. Improving the human hazard characterization of chemicals: a Tox21 update. Environ. Health Perspect. 121, 756–765 (2013).

    Google Scholar 

  71. Rodríguez-Pérez, R. & Bajorath, J. Interpretation of compound activity predictions from complex machine learning models using local approximations and Shapley values. J. Med. Chem. 63, 8761–8777 (2019).

    Google Scholar 

  72. Hochuli, J., Helbling, A., Skaist, T., Ragoza, M. & Koes, D. R. Visualizing convolutional neural network protein-ligand scoring. J. Mol. Graph. Model. 84, 96–108 (2018).

    Google Scholar 

  73. Jiménez-Luna, J., Skalic, M., Martinez-Rosell, G. & De Fabritiis, G. KDEEP: protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model. 58, 287–296 (2018).

    Google Scholar 

  74. Jiménez-Luna, J. et al. DeltaDelta neural networks for lead optimization of small molecule potency. Chem. Sci. 10, 10911–10918 (2019).

    Google Scholar 

  75. Todeschini, R. & Consonni, V. in Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing/Volume II: Appendices, References Vol. 41 (eds. Mannhold, R. et al.) 1–967 (Wiley, 2009).

  76. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Google Scholar 

  77. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst . 30, 5998–6008 (2017).

    Google Scholar 

  78. Weininger, D. Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Google Scholar 

  79. Grisoni, F. & Schneider, G. De novo molecular design with generative long short-term memory. CHIMIA Int. J. Chem. 73, 1006–1011 (2019).

    Google Scholar 

  80. Karpov, P., Godin, G. & Tetko, I. V. Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J. Cheminform. 12, 17 (2020).

    Google Scholar 

  81. Doshi-Velez, F. et al. Accountability of AI under the law: the role of explanation. Preprint at https://arxiv.org/abs/1711.01134 (2017).

  82. Ribeiro, M. T., Singh, S. & Guestrin, C. Anchors: high-precision model-agnostic explanations. In Thirty-Second AAAI Conference on Artificial Intelligence 1527–1535 (AAAI, 2018).

  83. Wachter, S., Mittelstadt, B. & Russell, C. Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. J. Law Technol. 31, 841–888 (2017).

    Google Scholar 

  84. Van Looveren, A. & Klaise, J. Interpretable counterfactual explanations guided by prototypes. Preprint at https://arxiv.org/abs/1907.02584 (2019).

  85. Dhurandhar, A. et al. Explanations based on the missing: towards contrastive explanations with pertinent negatives. Adv. Neural Inf. Process. Syst. 31, 592–603 (2018).

    Google Scholar 

  86. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301–320 (2005).

    MathSciNet  MATH  Google Scholar 

  87. Mousavi, A., Dasarathy, G. & Baraniuk, R. G. Deepcodec: adaptive sensing and recovery via deep convolutional neural networks. Preprint at https://arxiv.org/abs/1707.03386 (2017).

  88. Randić, M., Brissey, G. M., Spencer, R. B. & Wilkins, C. L. Search for all self-avoiding paths for molecular graphs. Comput. Chem. 3, 5–13 (1979).

    MATH  Google Scholar 

  89. Bonchev, D. & Trinajstić, N. Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67, 4517–4533 (1977).

    Google Scholar 

  90. Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 28, 2224–2232 (2015).

    Google Scholar 

  91. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning Vol. 70, 1263–1272 (JMLR.org, 2017).

  92. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012).

    Google Scholar 

  93. Kim, Y. Convolutional neural networks for sentence classification. Preprint at https://arxiv.org/abs/1408.5882 (2014).

  94. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595–608 (2016).

    Google Scholar 

  95. Wu, Z. et al. Moleculenet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Google Scholar 

  96. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. Preprint at https://arxiv.org/abs/1802.04364 (2018).

  97. Baldassarre, F. & Azizpour, H. Explainability techniques for graph convolutional networks. In International Conference on Machine Learning (ICML) Workshops, 2019 Workshop on Learning and Reasoning with Graph-Structured Representations (ICML, 2019).

  98. Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32, 9240–9251 (2019).

    Google Scholar 

  99. Veličković, P. et al. Graph attention networks. Preprint at https://arxiv.org/abs/1710.10903 (2017).

  100. Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J. & Hansch, C. Structure–activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34, 786–797 (1991).

    Google Scholar 

  101. Ishida, S., Terayama, K., Kojima, R., Takasu, K. & Okuno, Y. Prediction and interpretable visualization of retrosynthetic reactions using graph convolutional networks. J. Chem. Inf. Model. 59, 5026–5033 (2019).

    Google Scholar 

  102. Shang, C. et al. Edge attention-based multi-relational graph convolutional networks. Preprint at https://arxiv.org/abs/1802.04944 (2018).

  103. Ryu, S., Lim, J., Hong, S. H. & Kim, W. Y. Deeply learning molecular structure–property relationships using attention-and gate-augmented graph convolutional network. Preprint at https://arxiv.org/abs/1805.10988 (2018).

  104. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    Google Scholar 

  105. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X. & Detyniecki, M. The dangers of post-hoc interpretability: unjustified counterfactual explanations. In Proceedings of the 28th International Joint Conference on Artificial Intelligence 2801–2807 (AAAI, 2019)

  106. Melis, D. A. & Jaakkola, T. Towards robust interpretability with self-explaining neural networks. Adv. Neural Inf. Process. Syst. 31, 7775–7784 (2018).

    Google Scholar 

  107. Leake, D. B. in Case-based Reasoning: Experiences, Lessons and Future Directions, ch. 2 (ed. Leake, D. B.) (MIT Press, 1996).

  108. Kim, B., Rudin, C. & Shah, J. A. The Bayesian case model: a generative approach for case-based reasoning and prototype classification.Adv. Neural Inf. Process. Syst. 27, 1952–1960 (2014).

    Google Scholar 

  109. Li, O., Liu, H., Chen, C. & Rudin, C. Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In Thirty-Second AAAI Conference on Artificial Intelligence 3530–3538 (AAAI, 2018).

  110. Chen, C. et al. This looks like that: deep learning for interpretable image recognition. Adv. Neural Inf. Process. Syst. 32, 8928–8939 (2019).

    Google Scholar 

  111. Goodman, N. D., Tenenbaum, J. B. & Gerstenberg, T. Concepts in a Probabilistic Language of Thought Technical Report (Center for Brains, Minds and Machines, 2014).

  112. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    MathSciNet  MATH  Google Scholar 

  113. Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).

    Google Scholar 

  114. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K. & Wierstra, D. Matching networks for one shot learning. Adv. Neural Inf. Process. Syst. 29, 3630–3638 (2016).

    Google Scholar 

  115. Altae-Tran, H., Ramsundar, B., Pappu, A. S. & Pande, V. Low-data drug discovery with one-shot learning. ACS Cent. Sci. 3, 283–293 (2017).

    Google Scholar 

  116. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., & Viegas, F. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In International Conference on Machine Learning 2668–2677 (2018).

  117. Gilpin, L. H. et al. Explaining explanations: an overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) 80–89 (IEEE, 2018).

  118. Hendricks, L. A. et al. Generating visual explanations. Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science Vol. 9908 (eds Leibe, B., Matas, J., Sebe, N. & Welling, M.) (Springer, 2016).

  119. Antol, S. et al. VQA: visual question answering. In Proc. IEEE International Conference on Computer Vision 2425–2433 (IEEE, 2015).

  120. Rasmussen, C. E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning. Lecture Notes in Computer Science Vol. 3176 (Springer, 2004).

  121. Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 427–436 (IEEE, 2015).

  122. Hansen, L. K. & Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12, 993–1001 (1990).

    Google Scholar 

  123. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30, 6402–6413 (2017).

    Google Scholar 

  124. Freedman, D. A. Bootstrapping regression models. Ann. Stat. 9, 1218–1228 (1981).

    MathSciNet  MATH  Google Scholar 

  125. Huang, G. et al. Snapshot ensembles: train one, get m for free. Preprint at https://arxiv.org/abs/1704.00109 (2017).

  126. Zhang, R., Li, C., Zhang, J., Chen, C. & Wilson, A. G. Cyclical stochastic gradient MCMC for Bayesian deep learning. Preprint at https://arxiv.org/abs/1902.03932 (2019).

  127. Graves, A. Practical variational inference for neural networks. Adv. Neural Inf. Process. Syst. 24, 2348–2356 (2011).

    Google Scholar 

  128. Sun, S., Zhang, G., Shi, J. & Grosse, R. Functional variational bayesian neural networks. Preprint at https://arxiv.org/abs/1903.05779 (2019).

  129. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In International Conference on Machine Learning 1050–1059 (JMLR, 2016).

  130. Kendall, A. & Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30, 5574–5584 (2017).

    Google Scholar 

  131. Teye, M., Azizpour, H., & Smith, K. Bayesian uncertainty estimation for batch normalized deep networks. In International Conference on Machine Learning 4907–4916 (2018).

  132. Nix, D. A. & Weigend, A. S. Estimating the mean and variance of the target probability distribution. In Proc. 1994 IEEE International Conference on Neural Networks (ICNN’94) Vol. 1, 55–60 (IEEE, 1994).

  133. Chryssolouris, G., Lee, M. & Ramsey, A. Confidence interval prediction for neural network models. IEEE Trans. Neural Netw. 7, 229–232 (1996).

    Google Scholar 

  134. Hwang, J. G. & Ding, A. A. Prediction intervals for artificial neural networks. J. Am. Stat. Assoc. 92, 748–757 (1997).

    MathSciNet  MATH  Google Scholar 

  135. Khosravi, A., Nahavandi, S., Creighton, D. & Atiya, A. F. Lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 22, 337–346 (2010).

    Google Scholar 

  136. Ak, R., Vitelli, V. & Zio, E. An interval-valued neural network approach for uncertainty quantification in short-term wind speed prediction. IEEE Trans. Neural Netw. Learn. Syst. 26, 2787–2800 (2015).

    MathSciNet  Google Scholar 

  137. Jiang, H., Kim, B., Guan, M. & Gupta, M. To trust or not to trust a classifier. Adv. Neural Inf. Process. Syst. 31, 5541–5552 (2018).

    Google Scholar 

  138. Huang, W., Zhao, D., Sun, F., Liu, H. & Chang, E. Scalable Gaussian process regression using deep neural networks. In Twenty-Fourth International Joint Conference on Artificial Intelligence 3576–3582 (AAAI, 2015).

  139. Sheridan, R. P., Feuston, B. P., Maiorov, V. N. & Kearsley, S. K. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J. Chem. Inf. Comput. Sci. 44, 1912–1928 (2004).

    Google Scholar 

  140. Liu, R. & Wallqvist, A. Molecular similarity-based domain applicability metric efficiently identifies out-of-domain compounds. J. Chem. Inf. Model. 59, 181–189 (2018).

    Google Scholar 

  141. Janet, J. P., Duan, C., Yang, T., Nandy, A. & Kulik, H. J. A quantitative uncertainty metric controls error in neural network-driven chemical discovery. Chemi. Sci. 10, 7913–7922 (2019).

    Google Scholar 

  142. Scalia, G., Grambow, C. A., Pernici, B., Li, Y.-P. & Green, W. H. Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction. J. Chem. Inf. Model. 60, 2697–2717 (2020).

    Google Scholar 

  143. Obrezanova, O., Csányi, G., Gola, J. M. & Segall, M. D. Gaussian processes: a method for automatic QSAR modeling of ADME properties. J. Chem. Inf. Model. 47, 1847–1857 (2007).

    Google Scholar 

  144. Schroeter, T. S. et al. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules. J. Comput. Aided Mol. Des. 21, 485–498 (2007).

    Google Scholar 

  145. Bosc, N. et al. Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery. J. Cheminform. 11, 4 (2019).

    Google Scholar 

  146. Cortés-Ciriano, I. & Bender, A. Deep confidence: a computationally efficient framework for calculating reliable prediction errors for deep neural networks. J. Chem. Inf. Model. 59, 1269–1281 (2018).

    Google Scholar 

  147. Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

    Google Scholar 

  148. Zhang, Y. & Lee, A. A. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chem. Sci. 10, 8154–8163 (2019).

    Google Scholar 

  149. Hirschfeld, L., Swanson, K., Yang, K., Barzilay, R. & Coley, C. W. Uncertainty quantification using neural networks for molecular property prediction. Preprint at https://arxiv.org/abs/2005.10036 (2020).

  150. Kokhlikyan, N. et al. PyTorch Captum. GitHub https://github.com/pytorch/captum (2019).

  151. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).

    Google Scholar 

  152. Klaise, J., Van Looveren, A., Vacanti, G. & Coca, A. Alibi: algorithms for monitoring and explaining machine learning models. GitHub https://github.com/SeldonIO/alibi (2020).

  153. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  154. Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) 265–283 (USENIX Association, 2016).

  155. Lipton, Z. C. The doctor just won’t accept that! Preprint at https://arxiv.org/abs/1711.08037 (2017).

  156. Goodman, B. & Flaxman, S. European Union regulations on algorithmic decision-making and a ‘right to explanation’. AI Mag. 38, 50–57 (2017).

    Google Scholar 

  157. Ikebata, H., Hongo, K., Isomura, T., Maezono, R. & Yoshida, R. Bayesian molecular design with a chemical language model. J. Comput. Aided Mol. Des. 31, 379–391 (2017).

    Google Scholar 

  158. Segler, M. H., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120–131 (2018).

    Google Scholar 

  159. Nagarajan, D. et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J. Biol. Chem. 293, 3492–3509 (2018).

    Google Scholar 

  160. Müller, A. T., Hiss, J. A. & Schneider, G. Recurrent neural network model for constructive peptide design. J. Chem. Inf. Model. 58, 472–479 (2018).

    Google Scholar 

  161. Jiménez-Luna, J., Cuzzolin, A., Bolcato, G., Sturlese, M. & Moro, S. A deep-learning approach toward rational molecular docking protocol selection. Molecules 25, 2487 (2020).

    Google Scholar 

  162. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Google Scholar 

  163. Awale, M. & Reymond, J.-L. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17. J. Chem. Inf. Model. 54, 1892–1907 (2014).

    Google Scholar 

  164. Todeschini, R. & Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 64, 359–372 (2010).

    MathSciNet  Google Scholar 

  165. Katritzky, A. R. & Gordeeva, E. V. Traditional topological indexes vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research. J. Chem. Inf. Comput. Sci. 33, 835–857 (1993).

    Google Scholar 

  166. Sahigara, F. et al. Comparison of different approaches to define the applicability domain of qsar models. Molecules 17, 4791–4810 (2012).

    Google Scholar 

  167. Mathea, M., Klingspohn, W. & Baumann, K. Chemoinformatic classification methods and their applicability domain. Mol. Inform. 35, 160–180 (2016).

    Google Scholar 

  168. Liu, R., Wang, H., Glover, K. P., Feasel, M. G. & Wallqvist, A. Dissecting machine-learning prediction of molecular activity: is an applicability domain needed for quantitative structure–activity relationship models based on deep neural networks? J. Chem. Inf. Model. 59, 117–126 (2019).

    Google Scholar 

  169. Nembri, S., Grisoni, F., Consonni, V. & Todeschini, R. In silico prediction of cytochrome P450-drug interaction: QSARs for CYP3A4 and CYP2C9. Int. J. Mol. Sci. 17, 914 (2016).

    Google Scholar 

  170. Waller, D., Renwick, A., Gruchy, B. & George, C. The first pass metabolism of nifedipine in man. Br. J. Clin. Pharmacol. 18, 951–954 (1984).

    Google Scholar 

  171. Hiratsuka, M. et al. Characterization of human cytochrome p450 enzymes involved in the metabolism of cilostazol. Drug Metab. Dispos. 35, 1730–1732 (2007).

    Google Scholar 

  172. Raemsch, K. D. & Sommer, J. Pharmacokinetics and metabolism of nifedipine. Hypertension 5, II18 (1983).

    Google Scholar 

Download references

Acknowledgements

We thank N. Weskamp and P. Schneider for helpful feedback on the manuscript. This work was financially supported by the ETH RETHINK initiative, the Swiss National Science Foundation (grant no. 205321_182176) and Boehringer Ingelheim Pharma GmbH & Co. KG.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Gisbert Schneider.

Ethics declarations

Competing interests

G.S. declares a potential financial conflict of interest in his role as a co-founder of inSili.com GmbH, Zurich, and consultant to the pharmaceutical industry.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat Mach Intell 2, 573–584 (2020). https://doi.org/10.1038/s42256-020-00236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-020-00236-4

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics