Abstract
Astrocytes respond to chemical, electrical and mechanical stimuli with transient increases in intracellular calcium concentration ([Ca2+]i). We now show that astrocytes in situ display intrinsic [Ca2+]i oscillations that are not driven by neuronal activity. These spontaneous astrocytic oscillations can propagate as waves to neighboring astrocytes and trigger slowly decaying NMDA receptor-mediated inward currents in neurons located along the wave path. These findings show that astrocytes in situ can act as a primary source for generating neuronal activity in the mammalian central nervous system.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long range glial signaling. Science 247, 470–473 (1990).
Charles, A. C., Merril, J. E., Ditksen, E. R. & Sanderson, M. J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6, 983–992 (1991).
Dani, J. W., Chernavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocytic networks. Neuron 8, 429–440 (1992).
Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurones. Eur. J. Neurosci. 10, 2129–2142 (1998).
Hassinger, T. D.,. et al. Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J. Neurobiol. 28, 159–170 (1995).
Charles, A. C. Glia–neuron intercellular Ca2+ signaling. Dev. Neurosci. 16, 196–206 (1994).
Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771 (1994).
Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028 (1998).
Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).
Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bi-directional form of communication between neurons and astrocytes in situ. J. Neurosci, 17, 7817–7830 (1997).
Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K. & Haydon P. G. Glutamate-mediated astrocyte–neuron signaling. Nature 369, 744–747 (1994).
Bezzi, P. et al. Prostaglandins stimulate calcium dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).
Innocenti, B., Parpura, V. & Haydon P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).
Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. Snare protein dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).
Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapse: glia the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).
Carmignoto, G. Reciprocal communication systems between astrocytes and neurons. Prog. Neurobiol. 62, 561–581 (2000).
Schnitzer, J., Franke, W. W. & Schachner, M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J. Cell. Biol. 90, 435–447 (1981).
Giaume, C. & Venance, L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50–64 (1998).
Finkbeiner, S. M. Glial calcium. Glia 9, 83–104 (1993).
Guthrie, P. B. et al. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).
Parri, H. R. & Crunelli, V. Sodium current in thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. J. Neurosci. 18, 854–867 (1998).
Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).
Wyllie, D. J. A., Behe, B. & Colquhoun D. Single-channel activation and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J. Physiol. (Lond.) 510, 1–18 (1998).
Wenzel, A., Villa, M., Mohler, H. & Benke, D. Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain. J. Neurochem. 66, 1240–1247 (1996).
Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).
Porter, J. T. & Mccarthy, K. D. GFAP positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca]i . Glia 13, 101–112 (1995).
Araque, A., Sanzgiri, R. P., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822–6829 (1998).
Spreafico, R. et al. Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. Brain Res. Dev. Brain Res. 82, 231–244 (1994).
Golshani, P., Warren, R. A. & Jones, E. G. Progression of change in NMDA, non-NMDA and metabotropic glutamate receptor function at the developing corticothalamic synapse. J. Neurophysiol. 80, 143–154 (1998).
Misra, S. C., Brickley, S. G., Wyllie, D. J. & Cull-Candy, S. G. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar purkinje cells. J. Physiol. (Lond.) 525, 299–305 (2000).
Emptage, N. J, Reid., C. A. & Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store operated calcium entry and spontaneous transmitter release. Neuron 29, 197–208 (20 01).
Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995).
Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995).
Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72S, 77–98 (1993).
Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).
Catalano, S. M. & Shatz C. J. Activity-dependent cortical target selection by thalamic axons. Science 281, 559–562 (1998).
Miller, B., Chou, L. & Finlay, B. L. The early development of thalamocortical and corticothalamic projections. J. Comp. Neurol. 335, 16–41 (1993).
Liu, X. B., Honda, C. N. & Jones, E. G. Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J. Comp. Neurol. 352, 69–91 (1995).
Zantua, J. B., Wasserstrom, S. P., Arends, J. J. A., Jacquin, M. F. & Woolsey, T. A. Postnatal development of mouse “whisker” thalamus: ventroposterior medial nucleus (VPM), barreloids, and their thalamocortical relay neurons. Somatosens. Motor Res. 13, 307–322 (1996).
Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).
Collingridge, G. C. & Bliss, T.V. Memories of NMDA receptors and LTP. Trends Neurosci. 18, 54–56 (1995).
Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).
Perkel, D. J., Petrozzino, J. J., Nicoll, R. A. & Connor, J. A. The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long term potentiation. Neuron 11, 817–823 (1993).
Silver, J., Lopez, S. E., Wahlsten, D. & Coughlin, J. Axonal guidance during development of the great cerebral commisures, descriptive and experimental studies in vivo on the role of preformed glial pathways. J. Comp. Neurol. 210, 10–29 (1982).
Rakic, P., Cameron, R. S. & Komuro, H. Recognition adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4, 63–69 (1994).
Lois, C., Garcia-Verdugo, J.-M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).
Turner, J. P., Leresche, N., Guyon, A., Soltesz, I. & Crunelli, V. Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors. J. Physiol. (Lond.) 480, 281–295 (1994).
Perez Velazquez, J. L. & Carlen, P. L. Development of firing patterns and electrical properties in neurons of the rat ventrobasal thalamus. Dev. Brain. Res. 91, 164–170 (1996).
Acknowledgements
The authors wish to thank S.W. Hughes and T.I. Tóth for data analysis and the development of specialized statistical analysis software, and V.H. Perry for assistance with the immunocytochemistry analysis. The work was supported by the Wellcome Trust (grant 37089–98).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Parri, H., Gould, T. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4, 803–812 (2001). https://doi.org/10.1038/90507
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/90507
This article is cited by
-
Loss of neuron network coherence induced by virus-infected astrocytes: a model study
Scientific Reports (2023)
-
Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states
Molecular Psychiatry (2023)
-
Dysregulation of astrocytic Ca2+ signaling and gliotransmitter release in mouse models of α-synucleinopathies
Acta Neuropathologica (2023)
-
Dynamical analysis of astrocyte-induced neuronal hyper-excitation
Nonlinear Dynamics (2023)
-
Analysis of Network Models with Neuron-Astrocyte Interactions
Neuroinformatics (2023)