Abstract
Many T cell receptors (TCRs) that are selected to respond to foreign peptide antigens bound to self major histocompatibility complex (MHC) molecules are also reactive with allelic variants of self-MHC molecules. This property, termed alloreactivity, causes graft rejection and graft-versus-host disease. The structural features of alloreactivity have yet to be defined. We now present a basis for this cross-reactivity, elucidated by the crystal structure of a complex involving the BM3.3 TCR and a naturally processed octapeptide bound to the H-2Kb allogeneic MHC class I molecule. A distinguishing feature of this complex is that the eleven-residue-long complementarity-determining region 3 (CDR3) found in the BM3.3 TCRα chain folds away from the peptide binding groove and makes no contact with the bound peptide, the latter being exclusively contacted by the BM3.3 CDR3β. Our results formally establish that peptide-specific, alloreactive TCRs interact with allo-MHC in a register similar to the one they use to contact self-MHC molecules.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402 , 255–262 (1999).
Garcia, K. C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).
Garboczi, D. N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134– 141 (1996).
Ding, Y. H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino-acids. Immunity 8, 1–20 ( 1998).
Lee, P. U. Y., Churchill, H. R. O., Daniels, M., Jameson, S. & Kranz, D. Role of the 2C T cell receptor residues in the binding of self- and allo-major histocompatibility complexes. J. Exp. Med. 191, 1355–1364 (2000).
Rock E. P., Sibbald, P. R., Davis, M. M. & Chien, Y. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 (1994).
Guimezanes, A., Schumacher, T. N. M., Ploegh, H. L. & Schmitt-Verhulst, A.-M. A viral peptide can mimic an endogeneous peptide for allorecognition of a major histocompatibility complex class I product. Eur. J. Immunol . 22, 1651–1654 ( 1992).
Daniel, C., Horvath, S. & Allen, P. M. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity 8, 543–552.
Speir, J. A. et al. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553–562 (1998).
Wang, J. et al. Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody . EMBO J. 17, 10–26 (1998).
Young, A. C., Zhang, W., Sacchettini, J. C. & Nathenson, S. G. The three-dimensional structure of H-2Db at 2.4Å resolution: implications for antigen-determinant selection. Cell 76, 39–50 (1994).
Braden, B. C., Goldman, E. R., Mariuzza, R. A. & Poljak, R. J. Anatomy of an antibody molecule: structure, kinetics, thermodynamics and mutational studies of the anti lysozyme antibody D1.3. Immunol. Rev. 163, 45–57 (1998).
Zerrahn, J., Held, W. & Raulet, D. J. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).
Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).
Jouvin-Marche, E. et al. Genomic organization of the mouse T cell receptor Vα family. EMBO J. 9, 2141– 2150 (1990).
Fremont, D. H., Matsumura, M., Stura, E. A., Peterson, P. A. & Wilson, I. A. Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. Science 257, 919–927 ( 1992).
Malissen, M. et al. A T cell clone expresses two T cell receptor α genes but uses one αβ heterodimer for allorecognition and self MHC-restricted antigen recognition. Cell 55, 49– 59 (1988).
Bevan, M. J. High determinant density may explain the phenomenon of alloreactivity Immunol. Today 5, 128– 130 (1984).
Matzinger, P. & Bevan, M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell. Immunol. 29, 1–5 (1977).
Albert, F., Boyer, C., Buferne, M. & Schmitt-Verhulst, A.-M. Interaction between MHC-encoded products and cloned T cells. II. Analyses of physiological requirements indicate two different pathways of stimulation by class I alloantigens . Immunogenetics 19, 279– 294 (1984).
Pullen, J. K., Horton, R. M., Cai, Z. & Pease, L. R. Structural diversity of the classical H-2 genes: K, D, and L. J. Immunol. 148, 953–967 (1992).
Little, M. T. & Storb, R. The future of allogeneic stem cell transplantation: minimizing pain, maximizing gain. J. Clin. Invest. 105, 1679–1681 ( 2000).
Obst, R., Netuschil, N., Klopfer, K., Stevanovic, S. & Rammensee, H. G. The role of peptides in T cell alloreactivity is determined by self-major histocompatibility complex molecules . J. Exp. Med. 191, 805– 812 (2000).
Couez, D., Malissen M., Buferne, M., Schmitt-Verhulst, A. M. & Malissen, B. Each of the two productive T cell receptor α-gene rearrangements found in both the A10 and BM3-3 T cell clones give rise to an α chain which can contribute to the constitution of a surface-expressed αβ dimer. Int. Immunol. 3, 719– 729 (1991).
Grégoire, C., Malissen, B. & Mazza, G. Characterization of T cell receptor single-chain Fv fragments secreted by myeloma cells. Eur. J. Immunol. 26, 2410–2416 (1996).
Zhang, W., Young, A. C. M., Imarai, M., Nathenson, S. G. & Sacchettini, J. C. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition . Proc. Natl Acad. Sci. USA 89, 8403– 8407 (1992).
Willcox, B. E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357– 365 (1999).
Wlodawer, A. & Hodgson, K. O. Crystallization and crystal data of monellin. Proc. Natl Acad. Sci. USA 72, 398–399 (1975).
Leslie, A. G. W. in Crystallographic Computing (eds Moras, D., Podjarny, A. D. & Thierry, J. C.) 50–60 (Oxford Univ. Press, 1991).
Computational Project Number 4, CCP4, The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. D50, 760 (1994).
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157–163 ( 1994).
Housset, D. et al. The three-dimensional structure of a T-cell antigen receptor Vα Vβ heterodimer reveals a novel arrangement of the Vβ domain . EMBO J. 16, 4205–4216 (1997).
Fremont, D. H., Stura, E. A., Matsumura, M., Peterson, P. A. & Wilson, I. A. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl Acad. Sci. USA 92, 2479– 2483 (1995).
Jones, T. A., Zou, J-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110– 119 (1991).
Hubbard, S. J. & Thornton, J. P. “NACCESS” Computer Program, Department of Biochemistry and Molecular Biology, University College London (1993).
Nicholls, A., Scharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).
Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).
Merrit, E. A. & Bacon, D. J. Raster 3D: photorealistic molecular graphics. Meth. Enzymol. 277, 505– 524 (1997).
Acknowledgements
We thank S. Nathenson for the pET-3a Kb and pET-3a B2m plasmids; P. A. van der Merwe for advice on surface plasmon resonance; P. Fourquet for peptide synthesis; J.Bonicel for mass spectrometry analysis; L. Leserman, J. Howard and P. Golstein for comments on the manuscript, W. Burmeister for help with synchrotron data collection at ESFR ID4eh3 beamline and N. Guglietta for editing the manuscript. T. M. was supported by a fellowship from ARC. This work was supported by institutional grants from CNRS, CEA, INSERM and a specific grant from ARC.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Rights and permissions
About this article
Cite this article
Reiser, JB., Darnault, C., Guimezanes, A. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule . Nat Immunol 1, 291–297 (2000). https://doi.org/10.1038/79728
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/79728
This article is cited by
-
DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles
BMC Structural Biology (2018)
-
Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy
Scientific Reports (2016)
-
Paired TCRαβ analysis of virus‐specific CD8+ T cells exposes diversity in a previously defined ‘narrow’ repertoire
Immunology & Cell Biology (2015)
-
T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex
Nature Immunology (2015)
-
A similarity in peptide cross-reactivity between alloantigen- and nominal antigen-induced CD8+ T cell responses in vitro
Immunogenetics (2013)