Abstract
The majority of synapses in primary visual cortex mediate excitation between nearby neurons, yet the role of local recurrent connections in visual processing remains unclear. We propose that these connections are responsible for the spatial-phase invariance of complex-cell responses. In a network model with selective cortical amplification, neurons exhibit simple-cell responses when recurrent connections are weak and complex-cell responses when they are strong, suggesting that simple and complex cells are the low- and high-gain limits of the same basic cortical circuit. Given the ubiquity of invariant responses in cognitive processing, the recurrent mechanism we propose for complex cells may be widely applicable.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
McGuire, B. A., Hornung, J. P., Gilbert, C. D. & Wiesel, T. N. Patterns of synaptic input to layer 4 of cat striate cortex. J. Neurosci. 4, 3021–3033 (1984).
Kisvarday, Z. F. et al. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp. Brain Res. 64, 541–542 (1986).
LeVay, S. Synaptic organization of claustral and geniculate afferents to the visual cortex of the cat. J. Neurosci. 6, 3564–3575 (1986).
White, E. L. Cortical Circuits: Synaptic Organization of the Cerebral Cortex (Birkauser, Boston, 1989).
Braitenberg, V. & Schüz, A. Anatomy of the Cortex (Springer, Berlin, 1991).
Peters, A. & Payne, B. R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).
Peters, A. & Payne, B. R. A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cereb. Cortex 4, 215–229 (1994).
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).
Ben-Yishai, R., Bar-Or, L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).
Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).
Sompolinsky, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 (1997).
Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).
Chung, S. & Ferster, D. Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression. Neuron 20, 1177–1189 (1998).
Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).
Movshon, J., Thompson, I. & Tolhurst, D. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 53–77 (1978).
Movshon, J., Thompson, I. & Tolhurst, D. Receptive field organization of complex cells in cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).
Mel, B. W., Ruderman, D. L. & Archie, K. A. Translation–invariant orientation tuning in visual complex cells could derive from intradendritic computations. J. Neurosci. 18, 4325–4334 (1998).
Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).
Pollen, D. A. & Ronner, S. F. Phase relationships between adjacent simple cells in the visual cortex. Science 212, 1409–1411 (1981).
Toyama, K., Kimura, M. & Tanaka, K. Organization of cat visual cortex as investigated by cross–correlation technique. J. Neurophysiol. 46, 202–214 (1981).
Hawken, M. J., Shapley, R. M. & Grosof, D. H. Temporal-frequency selectivity in monkey visual cortex. Vis. Neurosci. 13, 477–492 (1996).
Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).
Varela, J. A. et al. A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci. 17, 7926–7940 (1997).
Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).
Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).
Alonso, J.-M. & Martinez, L. M. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1, 395–403 (1998).
Hoffman, K. P. & Stone, J. Conduction velocity of afferents of cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32, 460–466 (1971).
Singer, W., Tretter, F. & Cynader, M. Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J. Neurophysiol. 38, 1080–1098 (1975).
Ferster, D. & Lindström, S. An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. J. Physiol. (Lond.) 342, 181–215 (1983).
Hammond, P. & MacKay, D. M. Differential responses of cat visual cortical cells to textured stimuli. Exp. Brain Res. 22, 427–430 (1975).
Movshon, J. A. The velocity tuning of single units in cat striate cortex. J. Physiol. (Lond.) 249, 445–468 (1975).
Hammond, P. & MacKay, D. M. Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp. Brain Res. 30, 275–296 (1977).
Malpeli, J. G. Activity of cells in area 17 of the cat in absence of input from layer A of lateral geniculate nucleus. J. Neurophysiol. 49, 595–610 (1983).
Malpeli, J. G., Lee, C., Schwark, H. D. & Weyand, T. G. Cat area 17. I. Pattern of thalamic control of cortical layers. J. Neurophysiol. 56, 1062–1073 (1986).
Mignard, M. & Malpeli, J. G. Paths of information flow through visual cortex. Science 251, 1249–1251 (1991).
Sillito, A. M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).
Borg-Graham, L. J., Monier, C. & Frégnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).
Debanne, D., Shulz, D. E. & Frégnac, Y. Activity-dependent regulation of 'on' and 'off' responses in cat visual cortical receptive fields. J. Physiol. (Lond.) 508, 523–548 (1998).
Treves, A. Mean-field analysis of neuronal spike dynamics. Network 4, 259–284 (1993).
Acknowledgements
Research supported by the Sloan Center for Theoretical Neurobiology at Brandeis University, the National Science Foundation (DMS-95-03261), the W.M. Keck Foundation, the National Eye Institute (EY-11116) and the Alfred P. Sloan Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chance, F., Nelson, S. & Abbott, L. Complex cells as cortically amplified simple cells. Nat Neurosci 2, 277–282 (1999). https://doi.org/10.1038/6381
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/6381
This article is cited by
-
Fast optical recording of neuronal activity by three-dimensional custom-access serial holography
Nature Methods (2022)
-
Recurrent interactions in local cortical circuits
Nature (2020)
-
Recurrent network dynamics reconciles visual motion segmentation and integration
Scientific Reports (2017)
-
Efficient sensory cortical coding optimizes pursuit eye movements
Nature Communications (2016)
-
Dependence of V2 illusory contour response on V1 cell properties and topographic organization
Biological Cybernetics (2014)