Abstract
Of the ions involved in the intricate workings of the heart, calcium is considered perhaps the most important. It is crucial to the very process that enables the chambers of the heart to contract and relax, a process called excitation–contraction coupling. It is important to understand in quantitative detail exactly how calcium is moved around the various organelles of the myocyte in order to bring about excitation–contraction coupling if we are to understand the basic physiology of heart function. Furthermore, spatial microdomains within the cell are important in localizing the molecular players that orchestrate cardiac function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bers, D. M. Excitation–Contraction Coupling and Cardiac Contractile Force edn 2 (Kluwer Academic, Dordrecht, Netherlands, 2001).
Pogwizd, S. M., Schlotthauer, K., Li, L., Yuan, W. & Bers, D.M. Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium–calcium exchange, inward rectifier potassium current and residual β-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001).
Solaro, R. J. & Rarick, H. M. Troponin and tropomyosin—proteins that switch on and tune in the activity of cardiac myofilaments. Circ. Res. 83, 471–480 (1998).
Moss, R. L. & Buck, S. H. in Handbook of Physiology (eds Page, E., Fozzard, H. A. & Solaro, R. J.) 420–454 (Oxford Univ. Press, New York, 2001).
Fukuda, N., Sasaki, D., Ishiwata, S. & Kurihara, S. Length dependence of tension generation in rat skinned cardiac muscle. Circ. Res. 104, 1639–1645 (2001).
Bassani, J. W. M., Bassani, R. A. & Bers, D. M. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J. Physiol. 476, 279–293 (1994).
Brandes, R. & Bers, D. M. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ. Res. 80, 82–87 (1997).
Hove-Madsen, L., & Bers, D. M. Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circ. Res. 73, 820–828 (1993).
Li, L., Chu, G., Kranias, E. G. & Bers, D. M. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am. J. Physiol. 274, H1335–H1347 (1998).
Hasenfuss, G. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc. Res. 37, 279–289 (1998).
Delbridge, L. M., Bassani, J. W. M. & Bers, D. M. Steady-state twitch Ca2+ fluxes and cytosolic Ca2+ buffering in rabbit ventricular myocytes. Am. J. Physiol. 270, C192–C199 (1996).
Trafford, A. W., Díaz, M. E., Negretti, N. & Eisner, D. A. Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ. Res. 81, 477–484 (1997).
Peterson, B. Z., DeMaria, C. D. & Yue, D. T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).
Zühlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).
Scriven, D. R. L., Dan, P. & Moore, E. D. W. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys. J. 79, 2682–2691 (2000).
Sipido, K. R., Callewaert, G. & Carmeliet, E. Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ. Res. 76, 102–109 (1995).
Sham, J. S. K. et al. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. USA 95, 15096–15101 (1998).
Puglisi, J. L., Yuan, W., Bassani, J. W. M. & Bers, D. M. Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature. Circ. Res. 85, e7–e16 (1999).
Langer, G. A. & Peskoff, A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys. J. 70, 1169–1182 (1996).
Zahradníková, A., Zahradník, I., Györke, I. & Györke, S. Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli. J. Gen. Physiol. 114, 787–798 (1999).
Fujioka, Y., Komeda, M. & Matsuoka, S. Stoichiometry of Na+-Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J. Physiol. 523, 339–351 (2000).
Egger, M. & Niggli, E. Paradoxical block of the Na+-Ca2+ exchanger by extracellular protons in guinea-pig ventricular myocytes. J. Physiol. 523, 353–366 (2000).
Trafford, A. W., Díaz, M. E. O'., Neill, S. C. & Eisner, D. A. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. J. Physiol. 488, 577–586 (1995).
Leblanc, N. & Hume, J. R. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376 (1990).
Weber, C. R., Piacentino, V. III., Ginsburg, K. S. Houser, S. R. & Bers, D. M. Na/Ca exchange current and submembrane [Ca] during cardiac action potential. Circ. Res. (in the press).
Dipla, K., Mattiello, J. A., Margulies, K. B., Jeevanandam, V. & Houser, S. R. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ. Res. 84, 435–444 (1999).
Bassani, J. W. M., Yuan, W. & Bers, D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am. J. Physiol. 268, C1313–C1319 (1995).
Shannon, T. R., Ginsburg, K. S. & Bers, D. M. Potentiation of fractional SR Ca release by total and free intra-SR Ca concentration. Biophys. J. 78, 334–343 (2000).
Sitsapesan, R. & Williams, A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca2+-release channel by luminal Ca2+. J. Membr. Biol. 137, 215–226 (1994).
Lukyanenko, V., Györke, I. & Györke, S. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflügers Arch. 432, 1047–1054 (1996).
Brittsan, A. G. & Kranias, E. G. Phospholamban and cardiac contractile function. J. Mol. Cell. Cardiol. 32, 2131–2139 (2000).
Fruen, B. R., Bardy, J. M., Byrem, T. M., Strasburg, G. M. & Louis, C. F. Differential Ca2+ sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am. J. Physiol. 279, C724–C733 (2000).
Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).
Marx, S. O. et al. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J. Cell Biol. 153, 699–708 (2001).
Meyers, M. B. et al. Sorcin associates with the pore-forming subunit of voltage-dependent L-type Ca2+ channels. J. Biol. Chem. 273, 18930–18935 (1998).
Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).
Franzini-Armstrong, C., Protasi, F. & Ramesh, V. Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys. J. 77, 1528–1539 (1999).
Cheng, H., Lederer, W. J. & Cannell, M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993).
Wier, W. G. & Balke, C. W. Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation-contraction coupling in normal heart muscle. Circ. Res. 85, 770–776 (1999).
Bridge, J. H. B., Ershler, P. R. & Cannell, M. B. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. J. Physiol. 518, 469–478 (1999).
Lukyanenko, V. et al. Inhibition of Ca2+ sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophys. J. 79, 1273–1284 (2000).
Cannell, M. B., Cheng, H. & Lederer, W. J. The control of calcium release in heart muscle. Science 268, 1045–1049 (1995).
López-López, J. R., Shacklock, P. S., Balke, C. W. & Wier, W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268, 1042–1045 (1995).
Sham, J. S. K. et al. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl Acad. Sci. USA 95, 15096–15101 (1998).
Sipido, K. R., Carmeliet, E. & van de Werf, F. T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J. Physiol. 508, 439–451 (1998).
Zhou, Z. F. & January, C. T. Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys. J. 74, 1830–1839 (1998).
Levesque, P. C., Leblanc, N. & Hume, J. R. Release of calcium from guinea pig cardiac sarcoplasmic reticulum induced by sodium-calcium exchange. Cardiovasc. Res. 28, 370–378 (1994).
Lipp, P. & Niggli, E. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J. Physiol. 474, 439–446 (1994).
Sham, J. S. K., Cleemann, L. & Morad, M. Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+-Ca2+ exchange. Science 255, 850–853 (1992).
Bouchard, R. A., Clark, R. B. & Giles, W. R. Role of sodium-calcium exchange in activation of contraction in rat ventricle. J. Physiol. 472, 391–413 (1993).
Sipido, K. R., Carmeliet, E., & Pappano, A. Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. J. Physiol. 489, 1–17 (1995).
Levi, A. J., Spitzer, K. W., Kohmoto, O. & Bridge, J. H. B. Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes. Am. J. Physiol. 266, H1422–H1433 (1994).
Litwin, S. E., Li, J. & Bridge, J. H. B. Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. Biophys. J. 75, 359–371 (1998).
Sipido, K. R., Maes, M. & van de Werf, F. Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum—a comparison between L-type Ca2+ current and reverse-mode Na+-Ca2+ exchange. Circ. Res. 81, 1034–1044 (1997).
Lemaire, S., Piot, C., Seguin, J., Nargeot, J. & Richard, S. Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Recept. Channels 3, 71–81 (1995).
Aggarwal, R., Shorofsky, S. R., Goldman, L. & Balke, C. W. Tetrodotoxin-blockable calcium currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J. Physiol. 505, 353–369 (1997).
Santana, L. F., Gómez, A. M. & Lederer, W. J. Ca2+ flux through promiscuous cardiac Na+ channels: slip-mode conductance. Science 279, 1027–1033 (1998).
Cruz, J. D. S. et al. Whether “slip-mode conductance” occurs. Science 284, 711a (1999).
Nuss, H. B. & Marbán, E. Whether “slip-mode conductance” occurs. Science 284, 711a (1999).
Chandra, R., Chauhan, V. S., Starmer, C. F. & Grant, A. O. β-Adrenergic action on wild-type and KPQ mutant human cardiac Na+ channels: shift in gating but no change in Ca2+:Na+ selectivity. Cardiovasc. Res. 42, 490–502 (1999).
DelPrincipe, F., Egger, M., Niggli, E. L-type Ca2+ current as the predominant pathway of Ca2+ entry during INa activation in β-stimulated cardiac myocytes. J. Physiol. 527, 455–466 (2000).
Ferrier, G. R. & Howlett, S. E. Cardiac excitation–contraction coupling: role of membrane potential in regulation of contraction. Am. J. Physiol. (Heart Circ. Physiol.) 280, H1928–H1944 (2001).
Piacentino, V. III., Dipla, K., Gaughan, J. P. & Houser, S. R. Voltage-dependent Ca2+ release from the SR of feline ventricular myocytes is explained by Ca2+-induced Ca2+ release. J. Physiol. 523, 533–548 (2000).
Perez, P. J., Ramos-Franco, J., Fill, M. & Mignery, G. A. Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J. Biol. Chem. 272, 23961–23969 (1997).
Lipp, P. et al. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr. Biol. 10, 939–942 (2000).
Kentish, J. C. et al. Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3 . Am. J. Physiol. 258, H610–H615 (1990).
Brown, J. H. & Jones, L. G. in Phosphoinositides and Receptor Mechanisms (ed. Putney, J. W. Jr) 245–270 (Alan R. Liss, New York, 1986).
Poggioli, J., Sulpice, J. C. & Vassort, G. Inositol phosphate production following α1-adrenergic, muscarinic, or electrical stimulation in isolated rat heart. FEBS Lett. 206, 292–298 (1986).
Endoh, M. Cardiac α1-adrenoceptors that regulate contractile function: subtypes and subcellular signal transduction mechanisms. Neurochem. Res. 21, 217–229 (1996).
Gambassi, G., Spurgeon, H. A., Ziman, B. D., Lakatta, E. G. & Capogrossi, M. C. Opposing effects of α1-adrenergic receptor subtypes on Ca2+ and pH homeostasis in rat cardiac myocytes. Am. J. Physiol. 274, H1152–H1162 (1998).
Ramirez, M. T., Zhao, X. L., Schulman, H. & Brown, J. H. The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J. Biol. Chem. 272, 31203–31208 (1997).
Stern, M. D. Theory of excitation–contraction coupling in cardiac muscle. Biophys. J. 63, 497–517 (1992).
Lukyanenko, V., Wiesner, T. F. & Györke, S. Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. J. Physiol. 507, 667–677 (1998).
Marx, S. O. et al. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ. Res. 88, 1151–1158 (2001).
Satoh, H., Blatter, L. A. & Bers, D. M. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am. J. Physiol. 272, H657–H668 (1997).
Fabiato, A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 189–246 (1985).
Schiefer, A., Meissner, G. & Isenberg, G. Ca2+ activation and Ca2+ inactivation of canine reconstituted cardiac sarcoplasmic reticulum Ca2+-release channels. J. Physiol. 489, 337–348 (1995).
Sitsapesan, R., Montgomery, R. A. P. & Williams, A. J. New insights into the gating mechanisms of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circ. Res. 77, 765–772 (1995).
Györke, S. & Fill, M. Ryanodine receptor adaptation: control mechanism of Ca2+-induced Ca2+ release in heart. Science 260, 807–809 (1993).
Valdivia, H. H., Kaplan, J. H., Ellis-Davies, G. C. R. & Lederer, W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267, 1997–2000 (1995).
Li, L., DeSantiago, J., Chu, G., Kranias, E. G. & Bers, D. M. Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation. Am. J. Physiol. 278, H769–H779 (2000).
Kentish, J. C. et al. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88, 1059–1065 (2001).
Li, Y. & Bers, D. M. Protein kinase A phosphorylation of the ryanodine receptor does not alter Ca sparks in permeabilized mouse ventricular myocyte. Circulation 104, II-131 (2001).
Viatchenko-Karpinski, S. & Gyorke, S. Modulation of the Ca2+-induced Ca2+ release cascade by β-adrenergic stimulation in rat ventricular myocytes. J. Physiol. 533, 837–848 (2001).
Song, L. S. et al. β-Adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes. Circ. Res. 88, 794–801 (2001).
Ginsburg, K. S. & Bers, D. M. Isoproterenol does not increase the intrinsic gain of cardiac excitation–contraction coupling (ECC). Biophys. J. 80, 590a (2001).
Eisner, D. A., Choi, H. S., Díaz, M. E., O'Neill, S. C. & Trafford, A. W. Integrative analysis of calcium cycling in cardiac muscle. Circ. Res. 87, 1087–1094 (2000).
Davare, M. A. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav 1.2. Science 293, 298–101 (2001).
Bers, D. M. & Ziolo, M. T. When is cAMP not cAMP? Effects of compartmentalization. Circ. Res. 89, 373–375 (2001).
Kuschel, M. et al. β2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 99, 2458–2465 (1999).
Rybin, V. O., Xu, X. & Steinberg, S. F. Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ. Res. 84, 980–988 (1999).
Vila Petroff, M. G., Egan, J. M., Wang, X. & Sollott, S. J. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ. Res. 89, 445–452 (2001).
Aprigliano, O., Rybin, V. O., Pak, E., Robinson, R. B. & Steinberg, S. F. β1- and β2-adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am. J. Physiol. 272, H2726–H2735 (1997).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bers, D. Cardiac excitation–contraction coupling. Nature 415, 198–205 (2002). https://doi.org/10.1038/415198a
Issue Date:
DOI: https://doi.org/10.1038/415198a
This article is cited by
-
Bioelectricity in dental medicine: a narrative review
BioMedical Engineering OnLine (2024)
-
Regulation of myocardial contraction as revealed by intracellular Ca2+ measurements using aequorin
The Journal of Physiological Sciences (2024)
-
Synchronous force and Ca2+ measurements for repeated characterization of excitation-contraction coupling in human myocardium
Communications Biology (2024)
-
Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues
Nature Communications (2024)
-
Selective blockade of Cav1.2 (α1C) versus Cav1.3 (α1D) L-type calcium channels by the black mamba toxin calciseptine
Nature Communications (2024)