Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity of temporal information processing in the primary auditory cortex

Abstract

Neurons in the rat primary auditory cortex (A1) generally cannot respond to tone sequences faster than 12 pulses per second (pps). To test whether experience can modify this maximum following rate in adult rats, trains of brief tones with random carrier frequency but fixed repetition rate were paired with electrical stimulation of the nucleus basalis (NB) 300 to 400 times per day for 20–25 days. Pairing NB stimulation with 5-pps stimuli markedly decreased the cortical response to rapidly presented stimuli, whereas pairing with 15-pps stimuli significantly increased the maximum cortical following rate. In contrast, pairing with fixed carrier frequency 15-pps trains did not significantly increase the mean maximum following rate. Thus this protocol elicits extensive cortical remodeling of temporal response properties and demonstrates that simple differences in spectral and temporal features of the sensory input can drive very different cortical reorganizations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of rat auditory cortex neurons to repeated stimuli.
Figure 2: Temporal response plasticity induced by nucleus basalis stimulation.

Similar content being viewed by others

References

  1. Bakin, J. S. & Weinberger, N. M. Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res. 536, 271– 286 (1990).

    Article  CAS  Google Scholar 

  2. Bakin, J. S., South, D. A. & Weinberger, N. M. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behav. Neurosci. 110, 905–913 (1996).

    Article  CAS  Google Scholar 

  3. Recanzone, G. H., Merzenich, M. M. & Jenkins, W. M. Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a. J. Neurophysiol. 67, 1057– 1070 (1992).

    Article  CAS  Google Scholar 

  4. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031– 1056 (1992).

    Article  CAS  Google Scholar 

  5. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  6. Weinberger, N. M. Learning-induced changes of auditory receptive fields. Curr. Opin. Neurobiol. 3, 570–577 ( 1993).

    Article  CAS  Google Scholar 

  7. Xerri, C., Coq, J. O., Merzenich, M. M. & Jenkins, W. M. Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats. J. Physiol. (Paris) 90, 277–287 (1996).

    Article  CAS  Google Scholar 

  8. Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity [see comments]. Science 279, 1714–1718 (1998).

    Article  CAS  Google Scholar 

  9. Bakin, J. S. & Weinberger, N. M. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis [see comments]. Proc. Natl. Acad. Sci. USA 93, 11219– 11224 (1996).

    Article  CAS  Google Scholar 

  10. Bjordahl, T. S., Dimyan, M. A. & Weinberger, N. M. Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis. Behav. Neurosci. 112, 467– 479 (1998).

    Article  CAS  Google Scholar 

  11. Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201 (1983).

    Article  CAS  Google Scholar 

  12. De Ribaupierre, F., Goldstein, M. H. Jr & Yeni-Komshian, G. Cortical coding of repetitive acoustic pulses. Brain Res. 48, 205– 225 (1972).

    Article  CAS  Google Scholar 

  13. Tolhurst, D. J. & Movshon, J. A. Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257, 674–675 ( 1975).

    Article  CAS  Google Scholar 

  14. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. (Lond.) 283, 101–120 ( 1978).

    Article  CAS  Google Scholar 

  15. Schreiner, C. E. & Urbas, J. V. Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear. Res. 32, 49–63 (1988).

    Article  CAS  Google Scholar 

  16. Schreiner, C. E. & Langer, G. in Auditory Function (eds Edelman, G., Gall, E. & Cowan, M.) 337– 362 (John Wiley, New York, 1986).

    Google Scholar 

  17. Eggermont, J. J. & Smith, G. M. Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. J. Neurophysiol. 73, 227–245 (1995).

    Article  CAS  Google Scholar 

  18. Gaese, B. H. & Ostwald, J. Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur. J. Neurosci. 7, 438–450 ( 1995).

    Article  CAS  Google Scholar 

  19. Hawken, M. J., Shapley, R. M. & Grosof, D. H. Temporal-frequency selectivity in monkey visual cortex. Vis. Neurosci. 13, 477– 492 (1996).

    Article  CAS  Google Scholar 

  20. De Ribaupierre, F., Goldstein, M. H. J. & Yeni-Komshian, G. Intracellular study of the cat's primary auditory cortex. Brain Res. 48, 185– 204 (1972).

    Article  CAS  Google Scholar 

  21. Kenmochi, M. & Eggermont, J. J. Autonomous cortical rhythms affect temporal modulation transfer functions. Neuroreport 8, 1589–1593 (1997).

    Article  CAS  Google Scholar 

  22. Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785– 4799 (1998).

    Article  CAS  Google Scholar 

  23. Brosch, M. & Schreiner, C. E. Time course of forward masking tuning curves in cat primary auditory cortex. J. Neurophysiol. 77, 923–943 ( 1997).

    Article  CAS  Google Scholar 

  24. Schreiner, C. E., Mendelson, J., Raggio, M. W., Brosch, M. & Krueger, K. Temporal processing in cat primary auditory cortex. Acta Otolaryngol. Suppl. (Stockh.) 532, 54–60 (1997).

    Article  CAS  Google Scholar 

  25. Cartling, B. Control of computational dynamics of coupled integrate-and-fire neurons. Biol. Cybern. 76, 383–395 (1997).

    Article  CAS  Google Scholar 

  26. Beaulieu, C. & Cynader, M. Effect of the richness of the environment on neurons in cat visual cortex. II. Spatial and temporal frequency characteristics. Dev. Brain Res. 53, 82– 88 (1990).

    Article  CAS  Google Scholar 

  27. Pizzorusso, T., Fagiolini, M., Porciatti, V. & Maffei, L. Temporal aspects of contrast visual evoked potentials in the pigmented rat: effect of dark rearing. Vision Res. 37, 389–395 (1997).

    Article  CAS  Google Scholar 

  28. Woodrow, H. The effect of practice upon time-order errors in the comparison of temporal intervals. Psychol. Rev. 42, 127– 152 (1935).

    Article  Google Scholar 

  29. Neisser, U. & Hirst, W. Effect of practice on the identification of auditory sequences. Percept. Psychophys. 15, 391–398 (1974).

    Article  Google Scholar 

  30. Recanzone, G. H., Jenkins, W. M., Hradek, G. T. & Merzenich, M. M. Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. J. Neurophysiol. 67, 1015–1030 (1992).

    Article  CAS  Google Scholar 

  31. Nagarajan, S. S., Blake, D. T., Wright, B. A., Byl, N. & Merzenich, M. M. Practice-related improvements in somatosensory interval discrimination are temporally specific but generalize across skin location, hemisphere, and modality. J. Neurosci. 18, 1559–1570 (1998).

    Article  CAS  Google Scholar 

  32. Wright, B. A., Buonomano, D. V., Mahncke, H. W. & Merzenich, M. M. Learning and generalization of auditory temporal-interval discrimination in humans. J. Neurosci. 17, 3956– 3963 (1997).

    Article  CAS  Google Scholar 

  33. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  Google Scholar 

  34. Merzenich, M. M. et al. Temporal processing deficits of language-learning impaired children ameliorated by training [see comments]. Science 271, 77–81 (1996).

    Article  CAS  Google Scholar 

  35. Recanzone, G. H., Merzenich, M. M. & Schreiner, C. E. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J. Neurophysiol. 67, 1071–1091 (1992).

    Article  CAS  Google Scholar 

  36. Charpier, S., Behrends, J. C., Triller, A., Faber, D. S. & Korn, H. "Latent" inhibitory connections become functional during activity-dependent plasticity. Proc. Natl. Acad. Sci. USA 92, 117–120 ( 1995).

    Article  CAS  Google Scholar 

  37. Grabauskas, G. & Bradley, R. M. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract. J. Neurophysiol. 79, 595–604 (1998).

    Article  CAS  Google Scholar 

  38. Hollrigel, G. S., Morris, R. J. & Soltesz, I. Enhanced bursts of IPSCs in dentate granule cells in mice with regionally inhibited long-term potentiation. Proc. R. Soc. Lond. B Biol. Sci. 265, 63–69 (1998).

    Article  CAS  Google Scholar 

  39. Fischer, T. M., Blazis, D. E., Priver, N. A. & Carew, T. J. Metaplasticity at identified inhibitory synapses in Aplysia [see comments]. Nature 389, 860–865 (1997).

    Article  CAS  Google Scholar 

  40. Buonomano, D. V., Hickmott, P. W. & Merzenich, M. M. Context-sensitive synaptic plasticity and temporal-to-spatial transformations in hippocampal slices. Proc. Natl. Acad. Sci. USA 94, 10403–10408 ( 1997).

    Article  CAS  Google Scholar 

  41. Buonomano, D. V. & Merzenich, M. M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028– 1030 (1995).

    Article  CAS  Google Scholar 

  42. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons [see comments]. Nature 382, 807–810 (1996).

    Article  CAS  Google Scholar 

  43. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability [published erratum appears in Proc. Natl. Acad. Sci. USA 94, 5495, 1997]. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  Google Scholar 

  44. Metherate, R. & Weinberger, N. M. Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res. 480, 372–377 ( 1989).

    Article  CAS  Google Scholar 

  45. McKenna, T. M., Ashe, J. H. & Weinberger, N. M. Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4, 30–43 (1989).

    Article  CAS  Google Scholar 

  46. Dinse, H. R. et al. Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. Int. J. Psychophysiol. 26, 205–227 ( 1997).

    Article  CAS  Google Scholar 

  47. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control [see comments]. Science 275 , 220–224 (1997).

    Article  CAS  Google Scholar 

  48. Kelly, J. B. & Masterton, B. Auditory sensitivity of the albino rat. J. Comp. Physiol. Psychol. 91, 930– 936 (1977).

    Article  CAS  Google Scholar 

  49. Jimenez-Capdeville, M. E., Dykes, R. W. & Myasnikov, A. A. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J. Comp. Neurol. 381, 53– 67 (1997).

    Article  CAS  Google Scholar 

  50. Rasmusson, D. D., Clow, K. & Szerb, J. C. Frequency-dependent increase in cortical acetylcholine release evoked by stimulation of the nucleus basalis magnocellularis in the rat. Brain Res. 594, 150– 154 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant NS-10414, ONR grant N00014-96-102, Hearing Research Inc. and an NSF predoctoral fellowship. We thank H.W. Mahncke, R.C. deCharms and C.E. Schreiner for technical advice, and S.S. Nagarajan, W.J. Martin, D.V. Buonomano, P. Bedenbaugh, A.I. Basbaum, K. Miller, C.E. Schreiner and E. Knudsen for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Kilgard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilgard, M., Merzenich, M. Plasticity of temporal information processing in the primary auditory cortex. Nat Neurosci 1, 727–731 (1998). https://doi.org/10.1038/3729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing