Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification

Abstract

INWARDLY rectifying potassium channels conduct ions more readily in the inward than the outward direction, an essential property for normal electrical activity1,2. Although voltage-dependent block by internal magnesium ions may underlie inward rectification in some channels3–5, an intrinsic voltage-dependent closure of the channel plays a contributory, or even exclusive, role in others4,6–9. Here we report that, rather than being intrinsic to the channel protein, so-called intrinsic rectification of strong inward rectifiers requires soluble factors that are not Mg2+ and can be released from Xenopus oocytes and other cells. Biochemical and biophysical characterization identifies these factors as polyamines (spermine, spermidine, putrescine and cadaverine). The results suggest that intrinsic rectification results from voltage-dependent block of the channel pore by polyamines, not from a voltage sensor intrinsic to the channel protein10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, MA, 1992).

    Google Scholar 

  2. Trautwein, W. & Dudel, J. Pflügers Arch. ges. Physiol. 266, 324–334 (1958).

    Article  CAS  Google Scholar 

  3. Horie, M., Irisawa, H. & Noma, A. J. Physiol., Lond. 387, 251–272 (1987).

    Article  CAS  Google Scholar 

  4. Vandenberg, C. A. Proc. natn. Acad. Sci. U.S.A. 84, 2560–2562 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Matsuda, H., Saigusa, A. & Irisawa, H. Nature 325, 156–159 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Leech, C. A. & Stanfield, P. R. J. Physiol., Lond. 319, 295–309 (1981).

    Article  CAS  Google Scholar 

  7. Kurachi, Y. J. Physiol., Lond. 366, 365–385 (1985).

    Article  CAS  Google Scholar 

  8. Ishihara, K., Mitsuiye, A., Noma, A. & Takano, M. J. Physiol., Lond. 419, 297–320 (1989).

    Article  CAS  Google Scholar 

  9. Oliva, C., Cohen, I. S. & Pennefather, P. J. gen. Physiol. 96, 299–318 (1990).

    Article  CAS  Google Scholar 

  10. Jan, L. Y. & Jan, Y. N. Nature 371, 119–122 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Makhina, E. N., Kelly, A. J., Lopatin, A. N., Mercer, R. W. & Nichols, C. G. J. biol. Chem. 269, 20468–20474.

  12. Perier, F., Radeke, C. M. & Vandenburg, C. A. Proc. natn. Acad. Sci. U.S.A. 91, 6240–6244 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Matsuda, H. J. Physiol., Lond. 397, 237–258 (1988).

    Article  CAS  Google Scholar 

  14. Bachrach, U. Function of Naturally Occurring Polyamines (Academic, New York, 1973).

    Google Scholar 

  15. Miyamato, S., Kashiwagi, K., Ito, K., Watanabe, S. & Igarashi, K. Archs Biochem. Biophys. 300, 63–68 (1993).

    Article  Google Scholar 

  16. Osbourne, H. B., Mulner-Lorillon, O., Marot, J. & Belle, R. Biochem. biophys. Res. Commun. 158, 520–526 (1989).

    Article  Google Scholar 

  17. Gerbaut, L. Clin. Chem. 37, 2117–2120 (1991).

    CAS  PubMed  Google Scholar 

  18. Armstrong, C. M. J. gen. Physiol. 54, 553–575 (1969).

    Article  CAS  Google Scholar 

  19. Ho, K. et al. Nature 362, 31–38 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Frech, G. C., VanDongen, A. M., Schuster, G., Brown, A. M. & Joho, R. H. Nature 340, 642–645 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Lopatin, A. N. & Nichols, C. G. J. gen. Physiol. 103, 203–216 (1994).

    Article  CAS  Google Scholar 

  22. Nichols, C. G., Ho, K. & Herbert, S. J. Physiol., Lond. 476, 399–409 (1994).

    Article  CAS  Google Scholar 

  23. Tanaka, Y. J. Biochem. 91, 2029–2037 (1982).

    Article  CAS  Google Scholar 

  24. Hathaway, G. M. & Traugh, J. A. Archs Biochem. Biophys. 233, 133–138 (1984).

    Article  CAS  Google Scholar 

  25. Sacaan, A. I. & Johnson, K. M. Molec. Pharmac. 38, 705–710 (1990).

    CAS  Google Scholar 

  26. Stanfield, P. R. et al. J. Physiol., Lond. 478, 1–6 (1994).

    Article  CAS  Google Scholar 

  27. Wible, B. A., Taglialatela, M., Ficker, E. & Brown, A. M. Nature 371, 246–249 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Lu, Z. & MacKinnon, R. Nature 371, 243–246 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Laschet, J., Trottier, S., Grisar, T. & Leviel, V. Epilepsy Res. 12, 151–156 (1992).

    Article  CAS  Google Scholar 

  30. Caldarera, C. M., Orlandini, G., Casti, A. & Moruzzi, G. J. Molec. cell. Cardiol. 6, 95–104 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopatin, A., Makhina, E. & Nichols, C. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994). https://doi.org/10.1038/372366a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372366a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing