Abstract
LITHOSPHERIC plate motions at the Earth's surface result from thermal convection in the mantle1. Understanding mantle convection is made difficult by variations in the material properties of rocks as pressure and temperature increase from the surface to the core. The plates themselves result from high rock strength and brittle failure at low temperature near the surface. In the deeper mantle, elevated pressure may increase the effective viscosity by orders of magnitude2–5. The influence of depth-dependent viscosity on convection has been explored in two-dimensional numerical experiments6–8, but planforms must be studied in three dimensions. Although three-dimensional plan-forms can be elucidated by laboratory fluid dynamic experiments9,10, such experiments cannot simulate depth-dependent rheology. Here we use a three-dimensional spherical convection model11,12 to show that a modest increase in mantle viscosity with depth has a marked effect on the planform of convection, resulting in long, linear downwellings from the upper surface boundary layer and a surprisingly 'red' thermal heterogeneity spectrum, as observed for the Earth's mantle13. These effects of depth-dependent viscosity may be comparable to the effects of the plates themselves.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Turcotte, D. L. & Oxburgh, E. R. J. Fluid Mech. 28, 29–42 (1967).
Sammis, C. G., Smith, J. C. & Schubert, G. J. geophys. Res. 86, 10707–10718 (1981).
Sammis, C. G., Smith, J. C., Schubert, G. & Yuen, D. A. J. geophys. Res. 82, 3747–3761 (1977).
Ringwood, A. E. J. Geol. 90, 611–643 (1982).
Jeanloz, R. & Thompson, A. B. Rev. Geophys. Space Phys. 21, 51–74 (1983).
Foster, T. D. J. geophys. Res. 74, 685–693 (1969).
Gurnis, M. & Davies, G. F. Geophys. J. R. astr. Soc. 85, 523–541 (1986).
Christensen, U. R. Geophys. J. R. astr. Soc. 77, 343–384 (1984).
Busse, F. H. & Whitehead, J. A. J. Fluid Mech. 47, 305–320 (1971).
White, D. B. J. Fluid Mech. 91, 247–286 (1988).
Baumgardner, J. R., J. stat. Phys. 39, 501–511 (1985).
Bunge, H.-P. & Baumgardner, J. R. Comput. Phys. 9, 207–215 (1995).
Su, W. J. & Dziewonski, A. M. Nature 352, 121–126 (1991).
Nakada, M. & Lambeck, K. Geophys. J. 96, 497–517 (1989).
Hager, B. H. & Richards, M. A. Phil. Trans. R. Soc. Lond. 328, 309–327 (1989).
Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. J. geophys. Res. 98, 21895–21909 (1993).
Richards, M. A. in Glacial Isostacy, Sea Level and Mantle Rheology (eds Sabadini, R., Lambeck, K. & Boschi, E.) 571–588 (Kluwer, Dordrecht, 1991).
Gurnis, M. & Davies, G. F. Geophys. Res. Lett. 85, 541–544 (1986).
Richard, Y., Sabadini, R. & Spada, G. J. geophys. Res. 97, 14223–14236 (1992).
Cathles, L. M. The Viscosity of the Earth's Mantle (Princeton Univ. Press, 1975).
Peltier, W. R. A. Rev. Earth planet. Sci. 9, 119–225 (1981).
Forte, A. M. & Peltier, W. R. J. geophys. Res. 96, 20131–20159 (1991).
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Nature 361, 699–704 (1993).
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. J. geophys. Res. 99, 15877–15901 (1994).
Wasserburg, G. J., MacDonald, G. J. F., Hoyle, F. & Fowler, W. A. Science 143, 465–467 (1964).
Davies, G. F. J. geophys. Res. 93, 10467–10480 (1988).
Sleep, N. H. J. geophys. Res. 95, 6715–6736 (1990).
Jarvis, G. T. & Peltier, W. R. J. geophys. Res. 91, 435–451 (1986).
Zhang, S. & Yuen, D. A., Earth planet. Sci. Lett. 132, 157–166 (1995).
Buffett, B. A., Gable, C. W. & O'Connell, R. J. J. geophys. Res. 99, 19885–19900 (1994).
Lerch, F. J., Klosko, S. M. & Patch, G. B. NASA Tech. Memo 84, 986 (1983).
Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Phys. Earth planet. Inter. 59, 294–328 (1990).
Gurnis, M. & Zhong, S. Geophys. Res. Lett. 18, 581–584 (1991).
Tackley, P. J. Geophys. Res. Lett. 20, 2187–2190 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bunge, HP., Richards, M. & Baumgardner, J. Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996). https://doi.org/10.1038/379436a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/379436a0
This article is cited by
-
Influence of the asthenosphere on earth dynamics and evolution
Scientific Reports (2023)
-
The supercontinent cycle
Nature Reviews Earth & Environment (2021)
-
Global mantle convection models produce transform offsets along divergent plate boundaries
Communications Earth & Environment (2021)
-
Caribbean plate tilted and actively dragged eastwards by low-viscosity asthenospheric flow
Nature Communications (2021)
-
Effects of temperature- and pressure-dependent viscosity and internal heating on mantle convection
GEM - International Journal on Geomathematics (2021)