Abstract
Essential to the construction, maintenance and repair of tissues is the ability to induce suicide of supernumerary, misplaced or damaged cells with high specificity and efficiency. Study of three principal organisms — the nematode, fruitfly and mouse — indicate that cell suicide is implemented through the activation of an evolutionarily conserved molecular programme intrinsic to all metazoan cells. Dysfunctions in the regulation or execution of cell suicide are implicated in a wide range of developmental abnormalities and diseases.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 ( 1997).
Saxén, L. Organogenesis of the Kidney (Cambridge Univ. Press, Cambridge, 1987).
Namba, R., Pazdera, T. M., Cerrone, R. L. & Minden, J. S. Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. Development 124, 1393– 1403 (1997).
Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).
Hengartner, M. Apoptosis. Death by crowd control. Science 281, 1298–1299 (1998).
Shaham, S. Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J. Biol. Chem. 273, 35109–35117 (1998).
Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98 , 317–327 (1999).
Inukai, T. et al. SLUG, a CES-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein . Mol. Cell 4, 343–352 (1999).
Metzstein, M. M. & Horvitz, H. R. The C. elegans cell death specification gene ces-1 encodes a SNAIL family zinc finger protein. Mol. Cell 4, 309– 319 (1999).
Inaba, T. et al. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382, 541– 544 (1996).
Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E. & Horvitz, H. R. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2 . Nature 382, 545–547 (1996).
Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 ( 2000).
Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 ( 1999).
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 ( 1997).
Kanuka, H. et al. Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol. Cell 4, 757–769 (1999).
Zhou, L., Song, Z., Tittel, J. & Steller, H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol. Cell 4, 745– 755 (1999).
Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 ( 1999).
Antonsson, B. & Martinou, J. C. The Bcl-2 protein family. Exp. Cell Res. 256, 50–57 (2000).
Brachmann, C. B., Jassim, O. W., Wachsmuth, B. D. & Cagan, R. L. The Drosophila Bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr. Biol. 10, 547–550 (2000).
Igaki, T. et al. Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc. Natl Acad. Sci. USA 97, 662–667 (2000).
Colussi, P. A. et al. Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J. Cell Biol. 148, 703–714 ( 2000).
Zhang, H. et al. Drosophila Pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. J. Biol. Chem. 275, 27303–27306 (2000).
Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8 , 324–330 (1998).
Vaux, D. L., Weissman, I. L. & Kim, S. K. Prevention of programmed cell-death in Caenorhabditis elegans by human bcl-2. Science 258, 1955–1957 (1992).
White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 ( 1994).
Ollmann, M. et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91 –101 (2000).
Jin, S. et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 7301–7306 (2000).
Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103– 113 (2000).
Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling . Cell 95, 331–341 (1998).
Kurada, P. & White, K. Ras promotes cell survival in Drosophila by down-regulating hid expression. Cell 95, 319–329 (1998).
Foley, K. & Cooley, L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125, 1075–1082 (1998).
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).
Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).
Chai, J., Du, C., Wu, J.-W., Wang, X. & Shi, Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 ( 2000).
Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 ( 2000).
Meier, P., Silke, J., Leevers, S. J. & Evan, G. I. The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19, 598–611 ( 2000).
Song, Z. et al. Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell Biol. 20, 2907–2914 (2000).
Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A. & Hay, B. A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 ( 1999).
Chen, P. & Abrams, J. M. Drosophila apoptosis and Bcl-2 genes: outliers fly in. J. Cell Biol. 148, 625–627 (2000).
Bergmann, A., Agapite, J. & Steller, H. Mechanisms and control of programmed cell death in invertebrates . Oncogene 17, 3215–3223 (1998).
McCall, K. & Steller, H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279, 230 –234 (1998).
Jiang, C., Baehrecke, E. H. & Thummel, C. S. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124, 4673–4683 (1997).
Tata, J. R. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 13, 77 –94 (1966).
Kiess, W. & Gallaher, B. Hormonal control of programmed cell death/apoptosis. Eur. J. Endocrinol. 138, 482–491 (1998).
Merino, R., Ganan, Y., Macias, D., Rodriguez-Leon, J. & Hurle, J. M. Bone morphogenetic proteins regulate interdigital cell death in the avian embryo. Ann. NY Acad. Sci. 887, 120–132 (1999).
Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. (in the press).
Kondo, T., Yokokura, T. & Nagata, S. Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc. Natl Acad. Sci. USA 94, 11951–11956 (1997).
Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.Cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 . J. Biol. Chem. 274, 11549– 11556 (1999).
Varkey, J., Chen, P., Jemmerson, R. & Abrams, J. M. Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell. Biol. 144, 701–710 (1999).
Barres, B. A. & Raff, M. C. Axonal control of oligodendrocyte development. J. Cell Biol. 147, 1123– 1128 (1999).
Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).
Raff, M. C. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695 –700 (1993).
Weil, M., Jacobson, M. D. & Raff, M. C. Is programmed cell death required for neural tube closure? Curr Biol 7, 281– 284 (1997).
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).
Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).
Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739– 750 (1998).
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).
Middleton, G., Cox, S. W., Korsmeyer, S. & Davies, A. M. Differences in Bcl-2- and Bax-independent function in regulating apoptosis in sensory neuron populations. Eur. J. Neurosci. 12 , 819–827 (2000).
Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506 –1510 (1995).
Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).
Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ. 6, 1043–1053 (1999).
Wang, J. & Lenardo, M. J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies . J. Cell Sci. 113, 753– 757 (2000).
Yeh, W. C., Hakem, R., Woo, M. & Mak, T. W. Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling . Immunol. Rev. 169, 283– 302 (1999).
Honarpour, N. et al. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218, 248–258 (2000).
Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).
Xiang, J., Chao, D. & Korsmeyer, S. Bax-induced cell death may not require interleukin-1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93 , 14559–14563 (1996).
McCarthy, N., Whyte, M., Gilbert, C. & Evan, G. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136, 215–227 (1997).
Chautan, M., Chazal, G., Cecconi, F., Gruss, P. & Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).
Pena, J. C., Fuchs, E. & Thompson, C. B. Bcl-x expression influences keratinocyte cell survival but not terminal differentiation. Cell Growth Differ. 8, 619–629 (1997).
Merritt, A. J. et al. Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J. Cell Sci. 108, 2261–2271 (1995).
Evan, G. & Littlewood, T. A matter of life and cell death . Science 281, 1317–1322 (1998).
Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367– 1381 (1999).
Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).
Roulston, A., Marcellus, R. C. & Branton, P. E. Viruses and apoptosis. Annu. Rev. Microbiol. 53, 577–628 ( 1999).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000). https://doi.org/10.1038/35037734
Issue Date:
DOI: https://doi.org/10.1038/35037734
This article is cited by
-
ARTS and small-molecule ARTS mimetics upregulate p53 levels by promoting the degradation of XIAP
Apoptosis (2024)
-
The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells
Biological Trace Element Research (2023)
-
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials
Clinical and Translational Oncology (2023)
-
Early cellular development induced by ecdysteroid in sex-specific wing degeneration of the wingless female winter moth
Cell and Tissue Research (2022)
-
Advances in understanding the mitogenic, metabolic, and cell death signaling in teleost development: the case of greater amberjack (Seriola dumerili, Risso 1810)
Fish Physiology and Biochemistry (2022)