Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons

Abstract

IT has been suggested that amino acids and other organic compounds found in carbonaceous meteorites formed by aqueous alteration in the meteorite parent bodies1. Observations of carbonaceous material in interstellar grains and interplanetary dust particles2–4 indicate that condensed organic compounds may have been present in meteorite parent bodies at the time of aqueous alteration. One group of compounds thought to be representative of this carbonaceous material is the polycyclic aromatic hydrocarbons (PAHs)5. Recently it was proposed that PAHs condense on SiC grains in the molecular envelopes of carbon-rich red-giant stars6, which would allow for their subsequent incorporation into meteorite parent bodies during accretion. This incorporation mechanism is supported by the identification of SiC grains in carbonaceous chondrites7. The possibility therefore exists that PAHs, and/or other condensed organic compounds, represent the starting material for aqueous alteration which leads to the formation of amino acids and other water-soluble organic compounds. Here we present calculations of the distribution of aqueous organic compounds in metastable equilibrium with representative PAHs as functions of the fugacities of O2, CO2 and NH3. The results reported here for pyrene and fluoranthene, two PAHs with different structures but the same stoichiometry, differ greatly but indicate that the formation of amino and carboxylic acids is energetically favourable at probable parent-body alteration conditions. The actual reaction mechanisms involved could be revealed by consideration of isotope data for PAHs, amino acids, other organic compounds and carbonates in carbonaceous chondrites8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chang, S. & Bunch, T. in Clay Minerals and the Origin of Life, (ed. Cairns-Smith, A. G.) 116–129 (Cambridge University Press, 1986).

    Google Scholar 

  2. Bradley, J. P., Sandford, S. A. & Walker, R. M. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 861–895 (University of Arizona Press, Tucson, 1988).

    Google Scholar 

  3. Huss, G. R. Earth, Moon Planet. 40, 165–211 (1987).

    Article  ADS  Google Scholar 

  4. Zinner, E. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Mathews, M.S.) 956–983 (University of Arizona Press, Tucson, 1988).

    Google Scholar 

  5. Allamandola, L. J., Sandford, S. A. & Wopenka, B. Science 237, 56–59 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Frenklach, M., Carmer, C. S. & Feigelson, E. D. Nature 339, 196–198 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Bernatowicz, T. et al. Nature 330, 728–730 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Kerridge, J. F., Chang, S. & Shipp, R. Geochim. cosmochim. Acta 51, 2527–2540 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Epstein, S. et al. Nature 326, 477–479 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Peltzer, E. T. et al. Adv. Space Res. 4, 69–74 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Hayatsu, R. & Anders, E. Topics in Current Chemistry 99, 1–37 (1981).

    Article  CAS  Google Scholar 

  12. Herbst, E. Origins of Life 16, 3–19 (1985).

    ADS  CAS  Google Scholar 

  13. Cronin, J. R., Pizzarello, S. & Cruikshank, D. P. (1988) in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 819–857 (University of Arizona Press, Tucson, 1988).

    Google Scholar 

  14. Kerridge, J. F. & Bunch, T. E. in Asteroids (ed. Gehrels, T.) 745–764 (University of Arizona Press, Tucson, 1979).

    Google Scholar 

  15. McSween, H. Y. Jr Geochim. cosmochim. Acta 43, 1761–1770 (1979).

    Article  ADS  CAS  Google Scholar 

  16. McSween, H. Y. Jr Geochim. cosmochim. Acta 51, 2469–2477 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Bunch, T. E. & Chang, S. Geochim. cosmochim. Acta 44, 1543–1577 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Tomeoka, K. & Buseck, P. R. Geochim. cosmochim. Acta 49, 2149–2163 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Zolensky, M. E. & McSween, H. Y. Jr in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 114–143 (University of Arizona Press, Tucson, 1988).

    Google Scholar 

  20. Prinn, R. & Fegley, B. Jr A. Rev. Earth planet. Sci. 15, 171–212 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Grimm, R. E. & McSween, H. Y. Jr Icarus 82, 244–280 (1989).

    Article  ADS  Google Scholar 

  22. Lange, M. A., Lambert, P. & Ahrens, T. J. Geochim. cosmochim. Acta 49, 1715–1726 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Larimer, J. W. & Anders, E. Geochim. cosmochim. Acta 31, 1239–1270 (1967).

    Article  ADS  CAS  Google Scholar 

  24. Herbert, F. Icarus 78, 402–410 (1989).

    Article  ADS  Google Scholar 

  25. DuFresne, E. R. & Anders, E. Geochim. cosmochim. Acta 26, 1085–1114 (1962).

    Article  ADS  CAS  Google Scholar 

  26. Clayton, R. N. & Mayeda, T. K. Earth planet. Sci. Lett. 67, 151–161 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Shock, E. L. & Helgeson, H. C. Geochim. Cosmochim. Acta (in the press).

  28. Shock, E. L. Geology 16, 886–890 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Shock, E. L. Geology 17, 572–573 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Shock, E. L. Origins of Life 19, 538–539 (1989).

    Google Scholar 

  31. Basile, B. P., Middleditch, B. S. & Oró, J. Org. Geochem. 5, 211–216 (1984).

    Article  CAS  Google Scholar 

  32. Dayhoff, M. O. et al. NASA SP-3040 (National Aeronautics and Space Administration, Washington, DC, 1967).

  33. Stull, D. R., Westrum, E. F. Jr & Sinke, G. C. The Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969).

    Google Scholar 

  34. Wong, W.-K. & Westrum, E. F. Jr J. Chem. Thermodyn. 3, 105–124 (1971).

    Article  CAS  Google Scholar 

  35. Zolensky, M. E., Bourcier, W. L. & Gooding, J. L. Icarus 78, 411–425 (1989).

    Article  ADS  CAS  Google Scholar 

  36. Chang, S., Mack, R. & Lennon, K. Lunar planet. Sci. 9, 157–159 (1978).

    ADS  Google Scholar 

  37. Yuen, G. et al. Nature 307, 252–254 (1984).

    Article  ADS  CAS  Google Scholar 

  38. Clayton, R. N. Science 140, 192–193 (1963).

    Article  ADS  CAS  Google Scholar 

  39. Becker, R. H. & Epstein, S. Geochim. Cosmochim. Acta 46, 97–103 (1982).

    Article  ADS  CAS  Google Scholar 

  40. Zenobi, R. et al. Science 246, 1026–1029 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shock, E., Schulte, M. Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731 (1990). https://doi.org/10.1038/343728a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343728a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing