Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-frequency firing helps replenish the readily releasable pool of synaptic vesicles

Abstract

Synapses in the central nervous system undergo various short- and long-term changes in their strength1,2,3, but it is often difficult to distinguish whether presynaptic or postsynaptic mechanisms are responsible for these changes. Using patch-clamp recording from giant synapses in the mouse auditory brainstem4,5,6,7, we show here that short-term synaptic depression can be largely attributed to rapid depletion of a readily releasable pool of vesicles. Replenishment of this pool is highly dependent on the recent history of synaptic activity. High-frequency stimulation of presynaptic terminals significantly enhances the rate of replenishment. Broadening the presynaptic action potential with the potassium-channel blocker tetraethylammonium, which increases Ca2+ entry, further enhances the rate of replenishment. As this increase can be suppressed by the Ca2+-channel blocker Cd2+ or by the Ca2+ buffer EGTA, we conclude that Ca2+ influx through voltage-gated Ca2+ channels is the key signal that dynamically regulates the refilling of the releasable pool of synaptic vesicles in response to different patterns of inputs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use-dependent synaptic depression is independent of postsynaptic desensitization.
Figure 2: Presynaptic Ca2+ currents do not inactivate significantly in response to repetitive stimulation.
Figure 3: Replenishment kinetics are dependent on the frequency of presynaptic inputs.
Figure 4: Presynaptic spike waveform and TEA-induced spike broadening.
Figure 5: Ca2+ enhances the replenishment of the readily releasable pool of synaptic vesicles.
Figure 6: The Ca2+ chelator EGTA blocks the fast phase of replenishment.

Similar content being viewed by others

References

  1. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  2. Bliss, T. V. P. & Collingridge, G. A. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    Article  CAS  Google Scholar 

  4. Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.) 479, 381–387 (1994).

    Article  Google Scholar 

  5. Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594–597 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Borst, J. G. G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1996).

    Article  Google Scholar 

  8. Kuwabara, N., DiCaprio, R. A. & Zook, J. M. Afferents to the medial nucleus of the trapezpoid body and their collateral projections. J. Comp. Neurol. 314, 684–706 (1991).

    Article  CAS  Google Scholar 

  9. Morest, D. K. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Zeitschrift für Anatomie und Entwicklungsgeschichte 127, 201–220 (1968).

    Article  CAS  Google Scholar 

  10. Barnes-Davies, M. & Forsythe, I. D. Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J. Physiol. (Lond.) 488, 387–406 (1995).

    Article  CAS  Google Scholar 

  11. Trussel, L. O., Zhang, S. & Raman, I. M. Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10, 1185–1196 (1993).

    Article  Google Scholar 

  12. Isaacson, J. S. & Walmsley, B. Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. J. Neurophysiol. 76, 1566–1571 (1996).

    Article  CAS  Google Scholar 

  13. Wang, L.-Y., Forsythe, I. D. & Kaczmarek, L. K. Regulation of high-fidelity synaptic transmission by a presynaptic potassium chananel in the mouse auditory brainstem. Soc. Neurosci. Abstr. 23, 365(147.18) (1997).

    Google Scholar 

  14. Betz, W. J. Suppression of transmitter release at the neuromuscular junction of the frog. J. Physiol. (Lond.) 206, 629–644 (1970).

    Article  CAS  Google Scholar 

  15. Kusano, K. & Landau, E. M. Depression and recovery of transmission at the squid giant synapse. J. Physiol. (Lond.) 245, 13–32 (1975).

    Article  CAS  Google Scholar 

  16. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single synaptic boutons. Nature 375, 404–408 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl Acad. Sci. USA 92, 846–849 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  19. von Gersodorff, H. & Matthew, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci. 17, 1919–1927 (1997).

    Article  Google Scholar 

  20. von Gersodorff, H., Schneggenburger, R., Weis, S. & Neher, E. Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci. 17, 8137–8146 (1997).

    Article  Google Scholar 

  21. 1. Guinan, J. J., Norris, B. & Guinan, S. S. Single auditory units in the superior olivary complex II: locations of unit categories and tonotopic organization. Int. J. Neurosci. 4, 147–166 (1972).

    Article  Google Scholar 

  22. Brownell, W. E. Organization of the cat trapezoid body and the discharge characteristics of its fibres. Brain Res. 94, 413–433 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Wu, S. H. & Kelly, J. B. Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hearing Res. 68, 189–201 (1993).

    Article  CAS  Google Scholar 

  24. Parker, D. Depression of synaptic connections between identified motor neurons in the locust. J. Neurophysiol. 74, 529–538 (1995).

    Article  CAS  Google Scholar 

  25. Heinemann, C., Von Rüden, L., Chow, R. H. & Neher, E. Atwo-step model of secretion control in neuroendocrine cells. Pflügers Arch. 424, 105–112 (1993).

    Article  CAS  Google Scholar 

  26. Von Rüden, L. & Neher, E. ACa-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065 (1993).

    Article  ADS  Google Scholar 

  27. Hankel, A. W. & Almers, W. Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr. Opin. Neurobiol. 6, 350–357 (1996).

    Article  Google Scholar 

  28. Vater, M. & Braun, K. Parvalbumin, calbindin D-28k, and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats. J. Comp. Neurol. 341, 534–558 (1994).

    Article  CAS  Google Scholar 

  29. Lohmann, C. & Friauf, E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367, 90–109 (1996).

    Article  CAS  Google Scholar 

  30. Llinas, R., Sugimori, M. & Silver, R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Forsythe for his helpful insight and for sharing unpublished data, and N.Magoski, M. Whim and W. Joiner for critically reading the manuscript. This work is supported by an NIH grant to L.K.K. and a postdoctoral fellowship from the Eppley Foundation for Research to L.-Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard K. Kaczmarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LY., Kaczmarek, L. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394, 384–388 (1998). https://doi.org/10.1038/28645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing