Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Clustering in Small Networks of Excitatory Neurons with Heterogeneous Coupling Strengths

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Excitatory coupling with a slow rise time destabilizes synchrony between coupled neurons. Thus, the fully synchronous state is usually unstable in networks of excitatory neurons. Phase-clustered states, in which neurons are divided into multiple synchronized clusters, have also been found unstable in numerical studies of excitatory networks in the presence of noise. The question arises as to whether synchrony is possible in networks of neurons coupled through slow, excitatory synapses. In this paper, we show that robust, synchronous clustered states can occur in such networks. The effects of non-uniform distributions of coupling strengths are explored. Conditions for the existence and stability of clustered states are derived analytically. The analysis shows that a multi-cluster state can be stable in excitatory networks if the overall interactions between neurons in different clusters are stabilizing and strong enough to counter-act the destabilizing interactions between neurons within each cluster. When heterogeneity in the coupling strengths strengthens the stabilizing inter-cluster interactions and/or weakens the destabilizing in-cluster interactions, robust clustered states can occur in excitatory networks of all known model neurons. Numerical simulations were carried out to support the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF (1994) Decoding neuronal firing and modeling neural networks. Quarterly Review of Biophysics 27: 291-331.

    Google Scholar 

  • Chow CC (1998) Phase-locking in weakly heterogeneous neural networks. Physica D 118: 343-370.

    Google Scholar 

  • Collins JJ, Stewart IN (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J. Nonlinear Sci. 3: 349-392.

    Google Scholar 

  • Ermentrout B, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators. SIAM J. Math. Anal. 15: 215-237.

    Google Scholar 

  • Ernst U, Pawelzik K, Geisel T (1998) Delay-induced multistable sunchronization of biological oscillators. Phys. Rev. E 57: 2150-2162.

    Google Scholar 

  • Glass L, Mackey MC (1988) From Clocks to Chaos. The Rhythm of Life. Princeton University Press, New Jersey.

    Google Scholar 

  • Golomb D, Hansel D, Shraiman B, Sompolinsky H (1992) Clustering in globally coupled phase oscillators. Phys. Rev. A 45: 3516-3530.

    Google Scholar 

  • Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory neurons. Physica D 72: 259-282.

    Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus. J. Neurophysiol. 72: 1109-1126.

    Google Scholar 

  • Golubitsky M, Steward I, Buono P-L, Collins JJ (1998) A modular network for legged locomotion. Physica D 115: 56-72.

    Google Scholar 

  • Golubitsky M, Steward I, Buono P-L, Collins JJ (1999) Symmetry in locomotor central pattern generators and animal gaits. Nature 401: 693-695.

    Google Scholar 

  • Gray CM (1994) Synchronous oscillations in neuronal systems: Mechanisms and functions. J. Comput. Neurosci. 1: 11-38.

    Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.

    Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev. 55: 247-392.

    Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J. Neurophysiol. 48: 1321-1335.

    Google Scholar 

  • Hansel D, Mato G, Neunier C (1995) Synchrony in excitatory neural networks. Neural Comp. 7: 307-337.

    Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81: 3088-2092.

    Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical Physiology. Springer, New York.

    Google Scholar 

  • Knobil E (1987) A hypothalamic pulse generator governs mammalian reproduction. News Physiol. Sci. 2: 42-43.

    Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 97: 1867-1872.

    Google Scholar 

  • Kuramoto Y (1984) Chemical Oscillations, Waves and Turbulence. Springer, New York.

    Google Scholar 

  • Leng G (1988) Pulsatility in Neuroendocrine Systems. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66: 1059-1079.

    Google Scholar 

  • Mirollo RE, Strogatz SH (1990) Sychronization of pulse-coupled biological oscillators. SIAM J. Math. Anal. 50: 1645-1662.

    Google Scholar 

  • Nichols S, Wiesenfeld K (1992) Ubiquitous neutral stability of splayphase states. Phys. Rev. A 45: 8430-8435.

    Google Scholar 

  • Nicolelis MA, Baccala LA, Lin RC, Chapin JK (1995) Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268: 1353-1358.

    Google Scholar 

  • Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. USA 94: 7621-7626.

    Google Scholar 

  • Rekling JC, Feldman JL (1998) PreBotzinger complex and pacemaker neurons: Hypothesized site and kernel for respiratory rhythm generation. Ann. Rev. Physiol. 60: 385-405.

    Google Scholar 

  • Sherman A, Rinzel J (1992) Rhythmogenic effects of weak eletrotonic coupling in neural models. Proc. Natl. Acad. Sci. USA 89: 2471-2474.

    Google Scholar 

  • Sortie DW, Rand RH (1986) Dynamics of two strongly coupled relaxation oscillators. SIAM J. Math. Anal. 46: 56-67.

    Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254: 726-729.

    Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679-685.

    Google Scholar 

  • Traub RD, Jeffreys JGR, Whittington MA (1999) Fast Oscillations in Cortical Circuits. MIT Press, Cambridge.

    Google Scholar 

  • Van Vreeswijk C (1996) Partial synchronization in populations of pulse coupled oscillators. Phys. Rev. E 54: 5522-5537.

    Google Scholar 

  • Van Vreeswijk C, Abbott LF, Ermentrout B (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1: 313-321.

    Google Scholar 

  • Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16: 6402-6413.

    Google Scholar 

  • Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp. 4: 84-97.

    Google Scholar 

  • Wang YQ, Wang ZD, Li YX, Pei X (2002) Synchronous phase clustering in a network of neurons with spatially decaying excitatory coupling. In press.

  • Whittington MA, Traub RD, Faulkner HJ, Stanford IM, Jefferys JG (1997) Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA 94: 12198-121203.

    Google Scholar 

  • Williams TL, Sigvardt KA, Kopell N, Ermentrout GB, Remler M (1990) Forcing of coupled nonlinear oscillators: Studies of intersegmental coordination in the lamprey locomotor central pattern generator. J. Neurophysiol. 64: 862-871.

    Google Scholar 

  • Winfree A (1967) Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16: 15-42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YX., Wang, Yq. & Miura, R. Clustering in Small Networks of Excitatory Neurons with Heterogeneous Coupling Strengths. J Comput Neurosci 14, 139–159 (2003). https://doi.org/10.1023/A:1021902717424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021902717424

Navigation