Abstract
A physiologically based multicompartmental computational model of a midbrain dopamine (DA) neuron, calibrated using data from the literature, was developed and used to test the hypothesis that sodium dynamics drive the generation of a slow oscillation postulated to underlie NMDA-evoked bursting activity in a slice preparation. The full compartmental model was reduced to three compartments and ultimately to two variables, while retaining the biophysical interpretation of all parameters. A phase-plane analysis then suggested two mechanisms for the regulation of the firing pattern: (1) bursting activity is favored by manipulations that enhance the region of negative slope in the whole-cell IV curve and inhibited by those manipulations, such as increasing linear currents, that tend to dampen this region and (2) assuming a region of negative slope is present in the IV curve, the bias of the system can be altered, either enabling or disabling bursting. The model provides a coherent framework for interpreting the effects of glutamate, aspartate, NMDA, and GABA agonists and antagonists under current-clamp conditions, as well as the effects of NMDA and barium under voltage-clamp conditions.
Similar content being viewed by others
References
Bayer VE, Pickel VM (1991) GABA-labeled terminals form proportionately more synapses with dopaminergic neurons containing low densities of tyrosine hydroxylase-immunoreactivity in rat ventral tegmental area. Brain Res. 559:44–55.
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntingdon: Clinical, morphological, and neurochemical correlations. J. Neurosci. 20:415–455.
Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex. Science 205:929–932.
Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: Modulation by dopamine and GABAB receptors. J. Neurophysiol. 74:1137–1148.
Carter CJ (1982) Topographical distribution of possible glutaminergic pathways from the frontal cortex to the stratum and substantia nigra in rats. Neuropharmacology 21:379–383.
Celada P, Paladini C, Tepper J (in press) Gabaergic control of rat substantia nigra dopaminergic neurons: Role of globus pallidus and substantia nigra pars reticulata.
Charlety PJ, Grenhoff J, Chergui K, Svensson TH, Chouvet G (1991) Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate. Acta Physiol. Scand. 142:105–112.
Chergui K, Akaoka H, Charlety PJ, Saunier CF, Buda M, Chouvet G (1994) Subthalamic nucleus modulates burst firing of nigral dopamine neurons via NMDA receptors. Neuroreport 5:1185–1188.
Chergui K, Charlety PJ, Akaoka H, Saunier CF, Brunet JL, Buda M, Svensson TH, Chouvet G (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain neurons in vitro. Eur. J. Neurosci. 5:137–144.
Chergui K, Nomikos GG, Methe JM, Gonon FG, Svensson TH (1996) Burst stimulation of the medial forebrain bundle selectively increases fos-like immunoreactivity in the limbic forebrain of the rat. Neurosci. 72:141–156.
Christoffersen CL, Meltzer LT (1995) Evidence for N-methyl-Daspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: Possible preferential role for Nmethyl-D-aspartate receptors. Neurosci. 67:373–381.
DeWeer P, Rakowski RF (1984) Current generated by the backwardrunning electrogenic Na pump in squid giant axons. Nature 309:450–452.
Engberg G, Kling-Petersen T, Nissbrandt H (1993) GABAB receptor-activation alters the firing pattern of dopamine neurons in the rat substantia nigra. Synapse 15:229–338.
Fleck M, Henze D, Barrionuevo G, Palmer AM (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J. Neurosci. 13:3944–3955.
Freeman AS, Meltzer LT, Bunney BS (1985) Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sciences 36:1983–1994.
Fujimura K, Matsuda Y (1989) Autogenous oscillatory potentials in the neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci. Lett. 104:53–57.
Gariano RF, Groves PM (1988) Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res. 462:194–198.
Glitsch HG, Krahn T, Pusch H (1989) The dependence of the sodium pump current on internal Na concentration and membrane potential in cardioballs from sheep purkinje fibres. Pflügers Arch. 414:52–58.
Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine release by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neurosci. 24:19–28.
Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 4:2877–2890.
Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J. Neurosci. 9:3463–3481.
Gu X, Blatz AL, German DC (1992) Subtypes of substantia nigra dopaminergic neurons revealed by apamin: Autoradiographic and electrophysiological studies. Brain Res. Bull. 28:435–440.
Hairer E, Wanner G (1991) Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer Verlag, New York.
Hausser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647.
Hines M (1993) NEURON: A program for simulation of nerve equations. In: FH Eeckman, ed. Neural Systems: Analysis and Modeling. Kluwer Academic Publishers, Norwell, MA. pp. 127–136.
Hökfelt T, Everitt BJ, Theodorsson-Norheim E, Goldstein M (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic and medullary catecholamine neurons. J. Comp. Neurol. 222:543–559.
Hökfelt T, Skirbol L, Rehfeld JF, Goldstein M, Markey K, Dann O (1980) A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: Evidence from immunohistochemistry combined with retrograde tracing. Neurosci. 5:2093–4124.
Ip NY, Zigmond RE (1984) Pattern of presynaptic nerve activity can determine the type of neurotransmitter regulating a postsynaptic event. Nature 311:472–474.
Johnson SW, North RA (1992) Two types of neuron in the rat ventral tegmental area and their synaptics inputs. J. Physiol. 450:455–468.
Johnson SW, Seutin V (1997) Bicuculline methiodide potentiates NMDA-dependent burst firing by blocking apamin-sensitive Ca2+-activated K+ currents in rat dopamine neurons. Soc. Neurosci. Abstr. 23:1210.
Johnson SW, Seutin V, North RA (1992) Burst-firing in dopamine neurons induced by N-methyl-D-aspartate: Role of electrogenic sodium pump. Science 258:665–667.
Johnston D, Wu SMS (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, MA.
Juraska JM, Wilson CJ, Groves PM (1977) The substantia nigra of the rat: A Golgi study. J. Comp. Neurol. 172:585–600.
Kang Y, Kitai ST (1993) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci. Res. 18:209–221.
Koob GF, Vaccarino FJ, Amalric M, Bloom FE (1987) Positive reinforcement properties of drugs: Search for neural substrates. In: J Engel, L Oreland, eds. Brain Reward Systems and Abuse. Raven Press, New York. p. 35.
Kushmerick MJ, Podolsky RJ (1969) Ionic mobility in muscle cells. Science 166:1297–1298.
Lacey MG, Mercuri NB, North AR (1988) On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J. Physiol. 401:437–453.
Li YL, Bertram R, Rinzel J (1996) Modeling NMDA-induced bursting in dopamine neurons. Neurosci. 71:397–410.
Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J. of Neurophysiol. 67:145–163.
Marder E, Abbott LF (1995) Theory in motion. Curr. Opin. Neur. 5:832–840.
Mathé JM, Chergui K, Engberg G, Svensson TH (1996) GABAB receptors modulate the firing pattern of dopamine neurons in the ventral tegmental area. Soc. Neurosci. Abstr. 22:357.
Mayer ML, Westbrook GL (1987) Permeation and block of Nmethyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394:501–527.
Mercuri NB, Bonci A, Calabresi P, Stefani A, Bernardi G (1995) Properties of the hyperpolarization-activated cation current I H in rat midbrain dopaminergic neurons. Euro. J. Neurosci. 7:462–469.
Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br. J. Pharmacol. 113:831–838.
Mercuri NB, Stratta F, Calabresi P, Bernardi G (1992) A voltageclamp analysis of NMDA-induced responses on dopaminergic neurons of the rat substantia nigra zona compacta and ventral tegmental area. Brain Res. 593:51–56.
Mereu G, Costa E, Armstrong DM, VS (1991) Glutamate receptor subtypes mediate excitatory synaptic currents of dopamine neurons in midbrain slices. J. Neurosci. 11:1359–1366.
Mereu G, Lilliu V, Casula A, Vargiu PF, Diana M, Musa A, Gessa GL (1997) Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: Role of N-methyl-D-aspartate receptors. Neurosci. 77:1029–1036.
Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J. Gen. Physiol. 94:539–565.
Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine-and ω-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurons. J. Physiol. 466:727–747.
Ocallaghan J, Jarolimek W, Lewen A, Misgeld U (1996) (-)-baclofen-induced and constitutively active inwardly rectifying potassium conductances in cultured rat midbrain neurons. Pflugers Arch. 433:49–57.
Overton P, Clark D (1992) Iontophoretically administered drugs acting at the N-methyl-D-aspartate receptor to modulate burst firing in A9 dopamine neurons in the rat. Synapse 10:131–140.
Ping HX, Shepard PD (1996) Apamin-sensitive Ca2+-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. NeuroReport 7:809–814.
Preston RJ, McCrea RA, Chang HT, Kitai ST (1981) Anatomy and physiology of substantia nigra and retrorubral neurons studied by extra-and intracellular recording and by horseradish peroxidase labeling. Neurosci. 6:331–344.
Pytkowicz RM, ed. (1979) Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, FL.
Ribak CE, Vaughn JE, Roberts E (1980) GABAergic nerve terminals decrease in the substantia nigra following hemitransections of the striatonigral and pallidonigral pathways. Brain Res. 192:413–420.
Rinzel J, Ermentrout GB (1989) Analysis of neuronal excitability and oscillations. In: C Koch, I Segev, eds. Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, Cambridge, MA. pp.135–169.
Robledo P, Feger J (1990) Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Res. 518:47–54.
Sanghera MK, Trulson ME, German DC (1984) Electrophysiological properties of mouse dopamine neurons: In Vivo and in vitro studies. Neurosci. 12:793–801.
Scarnati E, Proia A, Campana E, Pacitti C (1986) A microiontophoretic study on the nature of the putative synaptic neurotransmitter involved in the pedunculopontine-substantia nigra pars compacta excitatory pathway of the rat. Exp. Brain Res. 46:470–478.
Schultz W, Romo R, Ljungberg T, Mirenowicz J, Hollerman JR, Dickinson A (1995) Reward-related signals carried by dopamine neurons. In JC Houk, JL Davis, DG Beiser, eds. Models of Information Processing in the Basal Ganglia, MIT Press, Cambridge, MA. ch. 12, pp. 233–248.
Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320:145–160.
Seutin V, Johnson SW, North RA (1993a) Apamin increasesNMDAinduced burst-firing of rat mesencephalic dopamine neurons. Brain Res. 630: 341–344.
Seutin V, Johnson SW, North RA (1994) Effect of dopamine and baclofen on N-methyl-D-aspartate-induced burst firing in rat ventral tegmental neurons. Neurosci. 58:201–206.
Seutin V, North RA, Johnson SW (1993b) Transmitter regulation of mesencephalic dopamine cells. In PW Kalivas, CD Barnes, eds. Limbic Motor Circuits and Neuropsychiatry. CRC Press, Boca Raton. ch. 3, pp. 89–100.
Seutin V, Shen KZ, North RA, Johnson SW (1996) Sulfonylureasensitive potassium current evoked by sodium-loading in rat midbrain dopamine neurons. Neurosci. 71:709–719.
Shepard PD (1993) The cellular basis of conditional bursting in mesencephalic dopamine-containing neurons. Schizophren. Res. 9:167.
Shepard PD, Bunney BS (1988) Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res. 463:380–384.
Silva NL, Pechura CM, Barker JL (1990) Postnatal rat nigral dopaminergic neurons exhibit five types of potassium conductances. J. Neurophysiol. 64:262–272.
Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J. Comp. Neurol. 296:47–64.
Svensson TH, Tung CS (1989) Local cooling of pre-frontal cortex induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo. Acta Physiol. Scand. 136:135–136.
Tepper JM, Martin LP, Anderson DR (1995) GABAA receptormediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J. Neurosci. 15:3092–3103.
Tepper JM, Sawyer SF, Groves PM (1987) Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: Light-microscopic analysis. J. Neurosci. 7:2794–2806.
Tong ZY, Overton PG, Clark D (1996) Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 22:195–208.
Walaas I, Fonnum F (1980) Biochemical evidence for gammaaminobutyrate containing fibers from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat. Neurosci. 5:63–72.
Wang T, French ED (1993a) Electrophysiological evidence for the existence of NMDA receptors on rat ventral tegmental dopamine neurons. Synapse 13:270–277.
Wang T, French ED (1993b) L-glutamate excitation of A10 dopamine neurons is preferentially mediated by activation of NMDA receptors: Electrophysiological studies in brain slices. Brain Res. 623:299–306.
Wang T, O'Connor WT, Ungerstedt U, French ED (1994) N-Methyl-D-aspartic acid biphasically regulates the biochemical and electrophysiological response of A10 dopamine neurons in the ventral tegmental area: in vivo microdialysis and in vitro electrophysiological studies. Brain Res. 666:255–262.
Wang XJ, Rinzel J (1995) Oscillatory and bursting properties of neurons. In: MA Arbib, ed. The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA. pp. 686–691.
Watts AE, Williams JT, Henderson G (1996) Baclofen inhibition of the hyperpolarization-activated cation current may be secondary to potassium current activation. J. Neurophysiol. 76:2262–2270.
Wilson CJ, Young SJ, Groves PM (1977) Statistical properties of neuronal spike trains in the substantia nigra: Cell types and their interactions. Brain Res. 136:243–260.
Wu HQ, Schwarcz R, Shepard PD (1994) Excitatory amino acidinduced excitation of dopamine-containing neurons in the rat substantia nigra: Modulation by kynurenic acid. Synapse 16:219–230.
Wu YN, Cameron W, Johnson SW (1996) Effect of baclofen on NMDA-mediated synaptic responses in rat midbrain dopamine neuron in vitro. Soc. Neurosci. Abstr. 22:1294.
Wu YN, Johnson SW (1996) Pharmacological characterization of inward current evoked by N-methyl-D-aspartate in dopamine neurons in the rat brain slice. J. Pharmacol. Exp. Ther. 279:1–7.
Yung WH, Hausser MA, Jack JJB (1991) Electrophysiology of dopaminergic and nondopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J. Physiol. 436:643–667.
Zhang J, Chiodo LA, Freeman AS (1994) Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopaminergic neurons in rat substantia nigra. J. Pharmacol. Exp. Ther. 269:313–321.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Canavier, C. Sodium Dynamics Underlying Burst Firing and Putative Mechanisms for the Regulation of the Firing Pattern in Midbrain Dopamine Neurons: A Computational Approach. J Comput Neurosci 6, 49–69 (1999). https://doi.org/10.1023/A:1008809000182
Issue Date:
DOI: https://doi.org/10.1023/A:1008809000182