Abstract
We present an iterative algorithm (BIN) for scaling all the rows and columns of a real symmetric matrix to unit 2-norm. We study the theoretical convergence properties and its relation to optimal conditioning. Numerical experiments show that BIN requires 2–4 matrix–vector multiplications to obtain an adequate scaling, and in many cases significantly reduces the condition number, more than other scaling algorithms. We present generalizations to complex, nonsymmetric and rectangular matrices.
Similar content being viewed by others
References
F.L. Bauer, Optimally scaled matrices, Numer. Math. 5 (1963) 73–87.
R.B. Bellman, Introduction to Matrix Analysis (SIAM, Philadelphia, PA, 1997).
A. Brandt, Guide to multigrid development, in: Multigrid Methods, Proc. of Conf., Köln-Porz, 23–27 November, 1981, eds. W. Hackbusch and U. Trottenberg, Lecture Notes in Mathematics, Vol. 960 (Springer, New York, 1982).
A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. 19 (1986) 23–56.
A. Brandt, Barriers to achieving textbook multigrid efficiency in CFD, Preprint, ICASE Interim Report No. 32, NASA/CR-198–207647 (appears as appendix C in [24]).
A. Brandt, Multiscale scientific computation: Review 2001, in: Multiscale and Multiresolution Methods: Theory and Applications, eds. T.J. Barth, T.F. Chan and R. Haimes, Lecture Notes in Computer Science and Engineering, Vol. 20 (Springer, New York, 2001) pp. 1–91.
A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in: Multilevel Optimization and VLSICAD, eds. J. Cong and J.R. Shinnerl (Kluwer Academic, Dordrecht, 2002) pp. 1–69.
A.R. Curtis and J.K. Reid, On the automatic scaling of matrices for Gaussian elimination, J. Inst. Math. Appl. 10 (1972) 118–124.
S.C. Eisenstat, J.W. Lewis and M.H. Schultz, Optimal block diagonal scaling of block 2-cyclic matrices, Linear Algebra Appl. 44 (1982) 181–186.
G.E. Forsythe and E.G. Straus, On best conditioned matrices, Proc. Amer. Math. Soc. 6 (1955) 340–345.
W. Gander, G.H. Golub and U. von Matt, A constrained eigenvalue problem, Linear Algebra Appl. 114/115 (1989) 815–839.
D. Goldberg, What every computer scientist show know about floating-point arithmetic, ACM Comput. Surv. 23 (1991) 5–48.
G.H. Golub and C. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1996).
G.H. Golub and J.M. Varah, On the characterization of the best l 2-scaling of a matrix, SIAM J. Numer. Anal. 11 (1974) 472–479.
http://www.nag.co.uk/.
http://www.cise.ufl.edu/research/sparse/umfpack/.
http://www.cise.ufl.edu/research/sparse/matrices/.
O.E. Livne, Multiscale eigenbasis algorithms, Ph.D. thesis, Weizmann Institute of Science, Israel (2000).
O.E. Livne and A. Brandt, Local mode analysis of multicolor and composite relaxation schemes, Preprint, Comput. Math. Appl. (2002).
O.E. Livne and G.H. Golub, Scaling by binormalization, SCCM Technical Report, Stanford University (2003); available at http://www-sccm.stanford.edu/~livne/publications.html.
J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (SIAM, Philadelphia, PA, 2000).
G.W. Stewart, Matrix Algorithms, Vol. I: Basic Decompositions (SIAM, Philadelphia, PA, 1998).
W.J. Stewart, Introduction to the Numerical Solution of Markov Chains (Princeton Univ. Press, Princeton, 1994).
U. Trottenberg, C.W. Oosterlee and A. Schüller, Multigrid (Academic Press, New York, 2000).
A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math. 14 (1969) 14–23.
R.S. Varga, Matrix Iterative Analysis (Springer, Berlin, 2000).
J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford Univ. Press, Oxford, 1965).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Livne, O.E., Golub, G.H. Scaling by Binormalization. Numerical Algorithms 35, 97–120 (2004). https://doi.org/10.1023/B:NUMA.0000016606.32820.69
Issue Date:
DOI: https://doi.org/10.1023/B:NUMA.0000016606.32820.69