Abstract
Multi-level network optimization problems arise in many contexts such as telecommunication, transportation, and electric power systems. A model for multi-level network design is formulated as a mixed-integer program. The approach is innovative because it integrates in the same model aspects of discrete facility location, topological network design, and dimensioning. We propose a branch-and-bound algorithm based on Lagrangian relaxation to solve the model. Computational results for randomly generated problems are presented showing the quality of our approach. We also present and discuss a real world problem of designing a two-level local access urban telecommunication network and solving it with the proposed methodology.
Similar content being viewed by others
References
Aho, A. V., Hopcroft, J. E. and Ullman, J. D.: Data Structures and Algorithms, Addison-Wesley, Reading, Mass., 1983.
Aneja, Y. P.: An integer linear programming approach to the Steiner problem in graphs, Networks 10 (1980), 167–178.
Balakrishnan, A. and Altinkemer, K.: Using a hop-constrained model to generate alternative communication network design, ORSA J. Comput. 4 (1992), 192–205.
Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: A dual-based algorithm for multi-level network design, Manag. Sci. 40(7) (1994), 567–581.
Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: Modeling and heuristic worst-case performance analysis of two-level network design problem, Manag. Sci. 40(7) (1994), 846–867.
Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: Designing Hierarchical Survivable Networks, Oper. Res. 46(1) (1998), 116–136.
Balakrishnan, A., Magnanti, T. L., Shulman, A. and Wong, R. T.: Models for planning capacity expansion in local access telecommunication networks, Ann. Oper. Res. 33 (1991), 239–284.
Barahona, F.: Network design using cut inequalities, SIAM J. Optim. 6(3) (1996), 823–837.
Barcelo, J. and Casanovas, J.: A heuristic Lagrangian algorithm for the capacitated plant location problem, Europ. J. Oper. Res. 15 (1984), 212–226.
Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D.: Linear Programming and Networks Flows, 2nd edn, Wiley, New York, 1990.
Beasley, J. E.: An SST-based algorithm for the Steiner problem in graphs, Networks 19 (1989), 1–16.
Beasley, J. E.: OR-library: distributing test problems by electronic Mail, J. Oper. Res. Soc. 41(11) (1990), 1069–1072.
Christofides, N. and Beasley, J. E.: A tree search algorithm for the P-median problem, Europ. J. Oper. Res. 10 (1982), 196–204.
Cruz, F. R. B., MacGregor Smith, J. and Mateus, G. R.: Solving to optimality the uncapacitated fixed-charge network flow problem, Comp. Oper. Res. 25(1) (1998), 67–81.
Current, J. R., ReVelle, C. S. and Cohon, J. L.: The hierarchical network design problem, Europ. J. Oper. Res. 27 (1986), 57–66.
Duin, C. W. and Volgenant, A.: Reducing the hierarchical network design problem, Europ. J. Oper. Res. 39 (1989), 332–344.
Erlenkotter, D.: A dual-based procedure for uncapacitated facility location, Oper. Res. 26(6) (1978), 992–1009.
Fisher, M. L.: The Lagrangian relaxation method for solving integer programming problems, Manag. Sci. 27 (1980), 1–18.
Fisher, M. L.: An application oriented guide to Lagrangian relaxation, Interfaces 15 (1985), 10–21.
Galvão, R. D. and Raggi, L. A.: A method for solving to optimality uncapacitated location problems, Ann. Oper. Res. 18 (1989), 225–244.
Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.
Gavish, B.: Topological design of telecommunication networks - local access design methods, Ann. Oper. Res. 33 (1991), 17–71.
Gavish, B.: Topological design of computer communication networks - The overall design problem, Europ. J. Oper. Res. 58 (1992), 149–172.
Goemans, M. X.: The Steiner tree polytope and related polyhedra, Math. Progr. 63 (1994), 157–182.
Goemans, M. X. and Myung, Y.: A catalog of Steiner tree formulations, Networks 23 (1993), 19–28.
Held, M. and Karp, R.M.: The traveling salesman problem and minimum spanning trees, Oper. Res. 18 (1970), 1138–1162.
Hochbaum, D. S. and Segev, A.: Analysis of a flow problem with fixed charges, Networks 19 (1989), 291–312.
Holmberg, K. and Hellstrand, J.: Solving the uncapacitated network design problem by a Lagrangian heuristic and branch-and-bound, Oper. Res. 46(2) (1998), 247–259.
Holmberg, K. and Yuan, D.: A Lagrangian approach to network design problems, Internat. Trans. Oper. Res. 5(6) (1998), 529–539.
Luna, H. P. L., Ziviani, N. and Cabral, R. M. B.: The telephonic switching centre network problem: Formalization and computational experience, Discrete Appl. Math. 18 (1987), 199–210.
Maculan, N., Souza, P. and Vejar, A. C.: An approach for the Steiner problem in directed graphs, Ann. Oper. Res. 33 (1991), 471–480.
Mateus, G. R., Cruz, F. R. B. and Luna, H. P. L.: An algorithm for hierarchical network design, Location Science 2(3) (1994), 149–164.
Mateus, G. R. and Franqueira, R. V. L.: Model and heuristic for a generalized access network design problem, Telecom. Systems 15(3- 4) (2000), 257–271.
Mateus, G. R., Luna, H. P. L. and Sirihal, A. B.: Heuristic for distribution network design in telecommunication, J. Heuristics 6 (2000), 131–148.
Mateus, G. R., Pádua, C. I. P. S. and Luna, H. P. L.: Integrated network models for local access network design, In: Proc. Internat. Telecom. Sympos. 1996, Acapulco, Mexico, 1996, pp. 6–10.
Minoux, M.: Network synthesis and optimum network design problems: Models, solution methods and applications, Networks 19 (1989), 313–360.
Rardin, R. L. and Wolsey, L. A.: Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems, Europ. J. Oper. Res. 71 (1993), 95–109.
Voß, S.: The Steiner tree problem with Hop constraints, Ann. Oper. Res. 86 (1999), 321–345.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cruz, F.R.B., Mateus, G.R. & MacGregor Smith, J. A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization Problem. Journal of Mathematical Modelling and Algorithms 2, 37–56 (2003). https://doi.org/10.1023/A:1023670814370
Issue Date:
DOI: https://doi.org/10.1023/A:1023670814370