Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization Problem

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Multi-level network optimization problems arise in many contexts such as telecommunication, transportation, and electric power systems. A model for multi-level network design is formulated as a mixed-integer program. The approach is innovative because it integrates in the same model aspects of discrete facility location, topological network design, and dimensioning. We propose a branch-and-bound algorithm based on Lagrangian relaxation to solve the model. Computational results for randomly generated problems are presented showing the quality of our approach. We also present and discuss a real world problem of designing a two-level local access urban telecommunication network and solving it with the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A. V., Hopcroft, J. E. and Ullman, J. D.: Data Structures and Algorithms, Addison-Wesley, Reading, Mass., 1983.

    Google Scholar 

  2. Aneja, Y. P.: An integer linear programming approach to the Steiner problem in graphs, Networks 10 (1980), 167–178.

    Google Scholar 

  3. Balakrishnan, A. and Altinkemer, K.: Using a hop-constrained model to generate alternative communication network design, ORSA J. Comput. 4 (1992), 192–205.

    Google Scholar 

  4. Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: A dual-based algorithm for multi-level network design, Manag. Sci. 40(7) (1994), 567–581.

    Google Scholar 

  5. Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: Modeling and heuristic worst-case performance analysis of two-level network design problem, Manag. Sci. 40(7) (1994), 846–867.

    Google Scholar 

  6. Balakrishnan, A., Magnanti, T. L. and Mirchandani, P.: Designing Hierarchical Survivable Networks, Oper. Res. 46(1) (1998), 116–136.

    Google Scholar 

  7. Balakrishnan, A., Magnanti, T. L., Shulman, A. and Wong, R. T.: Models for planning capacity expansion in local access telecommunication networks, Ann. Oper. Res. 33 (1991), 239–284.

    Google Scholar 

  8. Barahona, F.: Network design using cut inequalities, SIAM J. Optim. 6(3) (1996), 823–837.

    Google Scholar 

  9. Barcelo, J. and Casanovas, J.: A heuristic Lagrangian algorithm for the capacitated plant location problem, Europ. J. Oper. Res. 15 (1984), 212–226.

    Google Scholar 

  10. Bazaraa, M. S., Jarvis, J. J. and Sherali, H. D.: Linear Programming and Networks Flows, 2nd edn, Wiley, New York, 1990.

    Google Scholar 

  11. Beasley, J. E.: An SST-based algorithm for the Steiner problem in graphs, Networks 19 (1989), 1–16.

    Google Scholar 

  12. Beasley, J. E.: OR-library: distributing test problems by electronic Mail, J. Oper. Res. Soc. 41(11) (1990), 1069–1072.

    Google Scholar 

  13. Christofides, N. and Beasley, J. E.: A tree search algorithm for the P-median problem, Europ. J. Oper. Res. 10 (1982), 196–204.

    Google Scholar 

  14. Cruz, F. R. B., MacGregor Smith, J. and Mateus, G. R.: Solving to optimality the uncapacitated fixed-charge network flow problem, Comp. Oper. Res. 25(1) (1998), 67–81.

    Google Scholar 

  15. Current, J. R., ReVelle, C. S. and Cohon, J. L.: The hierarchical network design problem, Europ. J. Oper. Res. 27 (1986), 57–66.

    Google Scholar 

  16. Duin, C. W. and Volgenant, A.: Reducing the hierarchical network design problem, Europ. J. Oper. Res. 39 (1989), 332–344.

    Google Scholar 

  17. Erlenkotter, D.: A dual-based procedure for uncapacitated facility location, Oper. Res. 26(6) (1978), 992–1009.

    Google Scholar 

  18. Fisher, M. L.: The Lagrangian relaxation method for solving integer programming problems, Manag. Sci. 27 (1980), 1–18.

    Google Scholar 

  19. Fisher, M. L.: An application oriented guide to Lagrangian relaxation, Interfaces 15 (1985), 10–21.

    Google Scholar 

  20. Galvão, R. D. and Raggi, L. A.: A method for solving to optimality uncapacitated location problems, Ann. Oper. Res. 18 (1989), 225–244.

    Google Scholar 

  21. Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

    Google Scholar 

  22. Gavish, B.: Topological design of telecommunication networks - local access design methods, Ann. Oper. Res. 33 (1991), 17–71.

    Google Scholar 

  23. Gavish, B.: Topological design of computer communication networks - The overall design problem, Europ. J. Oper. Res. 58 (1992), 149–172.

    Google Scholar 

  24. Goemans, M. X.: The Steiner tree polytope and related polyhedra, Math. Progr. 63 (1994), 157–182.

    Google Scholar 

  25. Goemans, M. X. and Myung, Y.: A catalog of Steiner tree formulations, Networks 23 (1993), 19–28.

    Google Scholar 

  26. Held, M. and Karp, R.M.: The traveling salesman problem and minimum spanning trees, Oper. Res. 18 (1970), 1138–1162.

    Google Scholar 

  27. Hochbaum, D. S. and Segev, A.: Analysis of a flow problem with fixed charges, Networks 19 (1989), 291–312.

    Google Scholar 

  28. Holmberg, K. and Hellstrand, J.: Solving the uncapacitated network design problem by a Lagrangian heuristic and branch-and-bound, Oper. Res. 46(2) (1998), 247–259.

    Google Scholar 

  29. Holmberg, K. and Yuan, D.: A Lagrangian approach to network design problems, Internat. Trans. Oper. Res. 5(6) (1998), 529–539.

    Google Scholar 

  30. Luna, H. P. L., Ziviani, N. and Cabral, R. M. B.: The telephonic switching centre network problem: Formalization and computational experience, Discrete Appl. Math. 18 (1987), 199–210.

    Google Scholar 

  31. Maculan, N., Souza, P. and Vejar, A. C.: An approach for the Steiner problem in directed graphs, Ann. Oper. Res. 33 (1991), 471–480.

    Google Scholar 

  32. Mateus, G. R., Cruz, F. R. B. and Luna, H. P. L.: An algorithm for hierarchical network design, Location Science 2(3) (1994), 149–164.

    Google Scholar 

  33. Mateus, G. R. and Franqueira, R. V. L.: Model and heuristic for a generalized access network design problem, Telecom. Systems 15(3- 4) (2000), 257–271.

    Google Scholar 

  34. Mateus, G. R., Luna, H. P. L. and Sirihal, A. B.: Heuristic for distribution network design in telecommunication, J. Heuristics 6 (2000), 131–148.

    Google Scholar 

  35. Mateus, G. R., Pádua, C. I. P. S. and Luna, H. P. L.: Integrated network models for local access network design, In: Proc. Internat. Telecom. Sympos. 1996, Acapulco, Mexico, 1996, pp. 6–10.

  36. Minoux, M.: Network synthesis and optimum network design problems: Models, solution methods and applications, Networks 19 (1989), 313–360.

    Google Scholar 

  37. Rardin, R. L. and Wolsey, L. A.: Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems, Europ. J. Oper. Res. 71 (1993), 95–109.

    Google Scholar 

  38. Voß, S.: The Steiner tree problem with Hop constraints, Ann. Oper. Res. 86 (1999), 321–345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, F.R.B., Mateus, G.R. & MacGregor Smith, J. A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization Problem. Journal of Mathematical Modelling and Algorithms 2, 37–56 (2003). https://doi.org/10.1023/A:1023670814370

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023670814370

Navigation