Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bubble Stabilization of Spectral Methods: The Multidimensional Case

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A spectral Legendre method for the advection-diffusion equation is stabilized with the addition of locally supported bubble functions. It is shown that the spectral accuracy of the scheme is preserved and its stability is increased. Several strategies for choosing the stabilization parameter are proposed and compared with the aid of numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Baiocchi, C., Brezzi, F., and Franca, L. P. (1993). Virtual bubbles and Galerkin-least-squares type methods, Comput. Meth. Appl. Mech. Engng. 105, 125-142.

    Google Scholar 

  • Brezzi, F., Bristeau, M. O., Franca, L. P., Mallet, M., and Rogè, G. (1992). A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Meth. Appl. Mech. Engng. 96, 117-130.

    Google Scholar 

  • Brezzi, F., and Russo, A. (1994). Choosing bubbles for advection diffusion problems, Math. Models Meth in Appl. Sci. (to appear).

  • Brooks, A. N., and Hughes, T. J. R. (1982). Streamline upwind/Petrov Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Engng. 32, 199-259.

    Google Scholar 

  • Canuto, C. (1988). Spectral methods and as maximum principle, Math. Comp. 51, 615-629.

    Google Scholar 

  • Canuto, C. (1994). Stabilization of spectral methods by finite element bubble functions. In Bernardi, C., and Maday, A. (eds.), Proc. ICOSAHOM '92 Conference, Montpellier, North Holland; also in Comput. Meth. Appl. Mech. Engng. 116, 13–26.

    Google Scholar 

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (1990). Spectral Methods in Fluid Dynamics, Second Edition, Springer-Verlag, Berlin, New York.

    Google Scholar 

  • Canuto, C., and Puppo, G. (1994). Bubble stabilization of spectral Legendre methods for the advection diffusion equation, Comput. Meth. Appl. Mech. Engng. 118, 239-263.

    Google Scholar 

  • Canuto, C., and Van Kemenade, V. (1994). Bubble stabilized spectral methods for the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Engng. (submitted).

  • Franca, L. P., Frey, S. L., and Hughes, T. J. R. (1992). Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Meth. Appl. Mech. Engng. 95, 253-276.

    Google Scholar 

  • Gottlieb, D., and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods, Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia.

    Google Scholar 

  • Hughes, T. J. R., and Mallet, M. (1986). A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective diffusive systems, Comput. Meth. Appl. Mech. Engng. 58, 305-328.

    Google Scholar 

  • Lions, J.-L. (1973). Perturbations singulières dans les problèmes aux limites et en control optimal, Lectures Notes in Mathematics, Springer-Verlag, Berlin.

    Google Scholar 

  • Pasquarelli, F., and Quarteroni, A. (1994). Effective spectral approximations to convection diffusion equations. In Bernardi, C., and Maday, Y. (eds.), Proc. ICOSAHOM '92 Conference, Montpellier, North Holland; also in Comput. Meth. Appl. Mech. Engng. 116, 39–51.

    Google Scholar 

  • Szego, G. (1978). Orthogonal Polynomials, Am. Math. Society, Providence.

    Google Scholar 

  • Višik, I. M., and Lusternik, L. A. (1957). Equations differentielles linéaires avec un petit paramètre, Ousp. Mat. Nauk. 12,(77), 3-122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puppo, G. Bubble Stabilization of Spectral Methods: The Multidimensional Case. Journal of Scientific Computing 13, 115–149 (1998). https://doi.org/10.1023/A:1023239710075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023239710075

Navigation