Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The Asymmetric Exclusion Process: Comparison of Update Procedures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The asymmetric exclusion process (ASEP) has attracted a lot of interest not only because of its many applications, e.g., in the context of the kinetics of biopolymerization and traffic flow theory, but also because it is a paradigmatic model for nonequilibrium systems. Here we study the ASEP for different types of updates, namely random-sequential, sequential, sublattice-parallel, and parallel. In order to compare the effects of the different update procedures on the properties of the stationary state, we use large-scale Monte Carlo simulations and analytical methods, especially the so-called matrix-product Ansatz (MPA). We present in detail the exact solution for the model with sublattice-parallel and sequential updates using the MPA. For the case of parallel update, which is important for applications like traffic flow theory, we determine the phase diagram, the current, and density profiles based on Monte Carlo simulations. We furthermore suggest an MPA for that case and derive the corresponding matrix algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Privman (Ed.), Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, 1997).

  2. B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, 1995).

  3. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).

  4. T. M. Ligett, Interacting Particle Systems (Springer, 1985).

  5. S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  6. L. Garrido, J. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for conservative dynamics, Phys. Rev. A42:1954 (1990).

    Google Scholar 

  7. G. M. Schütz, Experimental realizations of integrable reaction-diffusion processes in biological and chemical systems. cond-mat/9601082.

  8. M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E51:2339 (1995).

    Google Scholar 

  9. B. Derrida and M. R. Evans, The asymmetric exclusion model: Exact results through a matrix approach, in ref. 1.

  10. P. Meakin, P. Ramanlal, L. Sander, and R. C. Ball, Ballistic deposition on surfaces, Phys. Rev. A34:5091 (1986).

    Google Scholar 

  11. M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  12. J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882 (1991).

    Google Scholar 

  13. B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667 (1992).

    Google Scholar 

  14. G. Schütz and E. Domany, Phase transitions in an exactly solvable one-dimensional exclusion process, J. Stat. Phys. 72:277 (1993).

    Google Scholar 

  15. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen. 26:1493 (1993).

    Google Scholar 

  16. A. Klümper, A. Schadschneider, and J. Zittartz, Equivalence and solution of anisotropic spin-1 models and generalized t — J fermion models in one dimension, J. Phys. A: Math. Gen. 24:L955 (1991); Groundstate properties of a generalized VBS-model, Z. Phys. B87:281 (1992); Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett. 24:293 (1993).

    Google Scholar 

  17. R. B. Stinchcombe and G. M. Schütz, Application of operator algebras to stochastic dynamics and the Heisenberg chain, Phys. Rev. Lett. 75:140 (1995).

    Google Scholar 

  18. K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A: Math. Gen. 29:5375 (1996).

    Google Scholar 

  19. H. Hinrichsen and S. Sandow, Deterministic exclusion process with a stochastic defect: Matrix product ground states, J. Phys. A: Math. Gen. 30:2745 (1997).

    Google Scholar 

  20. M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Asymmetric exclusion model with two species: Spontaneous symmetry breaking, J. Stat. Phys. 80:69 (1995).

    Google Scholar 

  21. H. Hinrichsen, S. Sandow, and I. Peschel, On matrix product ground states for reactiondiffusion models, J. Phys. A: Math. Gen. 29:2643 (1996).

    Google Scholar 

  22. F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, Reaction-diffusion processes, critical dynamics and quantum chains, Ann. Phys. 230:250 (1994).

    Google Scholar 

  23. K. Krebs and S. Sandow Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains, J. Phys. A: Math. Gen. 30:3165 (1997).

    Google Scholar 

  24. N. Rajewsky and M. Schreckenberg, Exact results for one dimensional stochastic cellular automata for different types of updates, Physica A245:139 (1997).

    Google Scholar 

  25. G. Le Caër, Comparision between simultaneous and sequential updating in 2n + 1 − 1 cellular automata, Physica A157:669 (1989).

    Google Scholar 

  26. H. Hinrichsen, Matrix product ground states for exclusion processes with parallel dynamics, J. Phys. A: Math. Gen. 29:3659 (1996).

    Google Scholar 

  27. G. M. Schütz, Time-dependent correlation functions in a one-dimensional asymmetric exclusion process, Phys. Rev. E47:4265 (1993).

    Google Scholar 

  28. N. Rajewsky, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion model with sequential update, J. Phys. A: Math. Gen. 29:L305 (1996).

    Google Scholar 

  29. A. Honecker and I. Peschel, Matrix-product states for a one-dimensional lattice gas with parallel dynamics, J. Stat. Phys. 88:319 (1997).

    Google Scholar 

  30. M. Fannes, B. Nachtergaele, and R. Werner, Finitely correlated states on quantum spin chains, Comm. Math. Phys. 144:443 (1992).

    Google Scholar 

  31. V. Hakim and J. P. Nadal, Exact results for 2d directed animals on a strip of finite width, J. Phys. A: Math. Gen. 16:L213 (1983).

    Google Scholar 

  32. H. Niggemann and J. Zittartz, Optimum ground states for spin-3/2 chains, Z. Phys.. B101:289 (1996).

    Google Scholar 

  33. F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A: Math. Gen. 29:3375 (1996).

    Google Scholar 

  34. K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: Applications to the exclusion process, J. Phys. A: Math. Gen. 30:4513 (1997).

    Google Scholar 

  35. P. F. Arndt, T. Heinzel, and V. Rittenberg, Stochastic models on a ring and quadratic algebras. The three species diffusion problem, J. Phys. A: Math. Gen. 31:833 (1998); F. C. Alcaraz, S. Dasmahapatra, and V. Rittenberg, N-species stochastic models with boundaries and quadratic algebras, J. Phys. A: Math. Gen. 31:845 (1998).

    Google Scholar 

  36. A. Schadschneider and M. Schrekenberg, Cellular automaton models and traffic flow, J. Phys. A: Math. Gen. 26:L679 (1993).

    Google Scholar 

  37. M. R. Evans, Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics, J. Phys. A: Math. Gen. 30 (1997).

  38. L. G. Tilstra and M. H. Ernst, Synchronous asymmetric exclusion processes, J. Phys. A31:5033 (1998).

    Google Scholar 

  39. N. Rajewsky, Exact results for one-dimensional stochastic processes, Dissertation (Universität zu Köln, 1997).

  40. N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion model with time continous and time non-continous update, in Proceedings of the 1996 Conference on Scientific Computing in Europe, H. J. Ruskin, R. O'Connor, Y. Feng, eds. (published by Centre for Teaching Computing, Dublin City University, 1996).

  41. A. Schadschneider and M. Schreckenberg, Car-oriented mean-field theory for traffic flow models, J. Phys. A: Math. Gen. 30:L69 (1997).

    Google Scholar 

  42. J. Krug and P. A. Ferrari, Phase transitions in driven diffusive systems with random rates, J. Phys. A: Math. Gen. 29:L465 (1996).

    Google Scholar 

  43. D. V. Ktitarev, D. Chowdhury, and D. E. Wolf, Stochastic traffic model with random deceleration probabilities: queueing and power-law gap distribution, J. Phys. A: Math. Gen. 30:L221 (1997).

    Google Scholar 

  44. S. Sandow, Partially asymmetric exclusion process with open boundaries, Phys. Rev. E50:2660 (1994).

    Google Scholar 

  45. N. Ito, Discrete-time and single-spin-flip dynamics of the Ising chain, Prog. Theor. Phys. 83:682 (1990).

    Google Scholar 

  46. B. Eisenblätter, L. Santen, A. Schadschneider, and M. Schreckenberg, Jamming transition in a cellular automaton model for traffic flow, Phys. Rev. E57:1309 (1998).

    Google Scholar 

  47. A. Schadschneider and M. Schreckenberg, Garden of Eden states in traffic models, J. Phys. A: Math. Gen. 31:L225 (1998).

    Google Scholar 

  48. B. Chopard, P. O. Luthi, and P.-A. Queloz, Cellulaz automata model of car traffic in a two-dimensional street network, J. Phys. A: Math. Gen. 29:2325 (1996); B. Chopard, in Proceedings of the Workshop on “Traffic and Granular Flow 1997” (to be published).

    Google Scholar 

  49. J. Esser and M. Schreckenberg, Microscopic simulation of urban traffic based on cellular automata, Int. J. Mod. Phys. C8:1025 (1997).

    Google Scholar 

  50. M. Ricker and K. Nagel, Experiences with a simplified microsimulation for the Dallas/Fort Worth area, Int. J. Mod. Phys. C8:483 (1997).

    Google Scholar 

  51. K. Nagel and C. L. Barrett, Using microsimulation feedback for trip adaptation for realistic traffic in Dallas, Int. J. Mod. Phys. C8:505 (1997).

    Google Scholar 

  52. S. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundary conditions, Phys. Rev. E54:2409 (1996).

    Google Scholar 

  53. N. Rajewsky, R. Raupach, and J. Zittartz, in preparation.

  54. A. K. Kolezhuk and H.-J. Mikeska, A new family of models with exact ground states connecting smoothly the S = 1/2 dimer and S = 1 Haldane phases of 1D spin chains, Phys. Rev. B56:R11380 (1997) (and refs. therein).

    Google Scholar 

  55. J. Zittartz, in preparation

  56. R. K. P. Zia and B. Schmittmann, Surprises in simple driven systems: Phase transitions in a three-state model, Int. J. Mod. Phys. C7:409 (1996).

    Google Scholar 

  57. T. Sasamoto, S. Mori, and M. Wadati, One-dimensional asymmetric exclusion model with open boundaries, J. Phys. Soc. Jpn. 65:2000 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajewsky, N., Santen, L., Schadschneider, A. et al. The Asymmetric Exclusion Process: Comparison of Update Procedures. Journal of Statistical Physics 92, 151–194 (1998). https://doi.org/10.1023/A:1023047703307

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023047703307

Navigation