Abstract
The asymmetric exclusion process (ASEP) has attracted a lot of interest not only because of its many applications, e.g., in the context of the kinetics of biopolymerization and traffic flow theory, but also because it is a paradigmatic model for nonequilibrium systems. Here we study the ASEP for different types of updates, namely random-sequential, sequential, sublattice-parallel, and parallel. In order to compare the effects of the different update procedures on the properties of the stationary state, we use large-scale Monte Carlo simulations and analytical methods, especially the so-called matrix-product Ansatz (MPA). We present in detail the exact solution for the model with sublattice-parallel and sequential updates using the MPA. For the case of parallel update, which is important for applications like traffic flow theory, we determine the phase diagram, the current, and density profiles based on Monte Carlo simulations. We furthermore suggest an MPA for that case and derive the corresponding matrix algebra.
Similar content being viewed by others
REFERENCES
V. Privman (Ed.), Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, 1997).
B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, 1995).
H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).
T. M. Ligett, Interacting Particle Systems (Springer, 1985).
S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors, J. Stat. Phys. 34:497 (1984).
L. Garrido, J. Lebowitz, C. Maes, and H. Spohn, Long-range correlations for conservative dynamics, Phys. Rev. A42:1954 (1990).
G. M. Schütz, Experimental realizations of integrable reaction-diffusion processes in biological and chemical systems. cond-mat/9601082.
M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E51:2339 (1995).
B. Derrida and M. R. Evans, The asymmetric exclusion model: Exact results through a matrix approach, in ref. 1.
P. Meakin, P. Ramanlal, L. Sander, and R. C. Ball, Ballistic deposition on surfaces, Phys. Rev. A34:5091 (1986).
M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889 (1986).
J. Krug, Boundary-induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882 (1991).
B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69:667 (1992).
G. Schütz and E. Domany, Phase transitions in an exactly solvable one-dimensional exclusion process, J. Stat. Phys. 72:277 (1993).
B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen. 26:1493 (1993).
A. Klümper, A. Schadschneider, and J. Zittartz, Equivalence and solution of anisotropic spin-1 models and generalized t — J fermion models in one dimension, J. Phys. A: Math. Gen. 24:L955 (1991); Groundstate properties of a generalized VBS-model, Z. Phys. B87:281 (1992); Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett. 24:293 (1993).
R. B. Stinchcombe and G. M. Schütz, Application of operator algebras to stochastic dynamics and the Heisenberg chain, Phys. Rev. Lett. 75:140 (1995).
K. Mallick, Shocks in the asymmetry exclusion model with an impurity, J. Phys. A: Math. Gen. 29:5375 (1996).
H. Hinrichsen and S. Sandow, Deterministic exclusion process with a stochastic defect: Matrix product ground states, J. Phys. A: Math. Gen. 30:2745 (1997).
M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Asymmetric exclusion model with two species: Spontaneous symmetry breaking, J. Stat. Phys. 80:69 (1995).
H. Hinrichsen, S. Sandow, and I. Peschel, On matrix product ground states for reactiondiffusion models, J. Phys. A: Math. Gen. 29:2643 (1996).
F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, Reaction-diffusion processes, critical dynamics and quantum chains, Ann. Phys. 230:250 (1994).
K. Krebs and S. Sandow Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains, J. Phys. A: Math. Gen. 30:3165 (1997).
N. Rajewsky and M. Schreckenberg, Exact results for one dimensional stochastic cellular automata for different types of updates, Physica A245:139 (1997).
G. Le Caër, Comparision between simultaneous and sequential updating in 2n + 1 − 1 cellular automata, Physica A157:669 (1989).
H. Hinrichsen, Matrix product ground states for exclusion processes with parallel dynamics, J. Phys. A: Math. Gen. 29:3659 (1996).
G. M. Schütz, Time-dependent correlation functions in a one-dimensional asymmetric exclusion process, Phys. Rev. E47:4265 (1993).
N. Rajewsky, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion model with sequential update, J. Phys. A: Math. Gen. 29:L305 (1996).
A. Honecker and I. Peschel, Matrix-product states for a one-dimensional lattice gas with parallel dynamics, J. Stat. Phys. 88:319 (1997).
M. Fannes, B. Nachtergaele, and R. Werner, Finitely correlated states on quantum spin chains, Comm. Math. Phys. 144:443 (1992).
V. Hakim and J. P. Nadal, Exact results for 2d directed animals on a strip of finite width, J. Phys. A: Math. Gen. 16:L213 (1983).
H. Niggemann and J. Zittartz, Optimum ground states for spin-3/2 chains, Z. Phys.. B101:289 (1996).
F. H. L. Essler and V. Rittenberg, Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries, J. Phys. A: Math. Gen. 29:3375 (1996).
K. Mallick and S. Sandow, Finite dimensional representations of the quadratic algebra: Applications to the exclusion process, J. Phys. A: Math. Gen. 30:4513 (1997).
P. F. Arndt, T. Heinzel, and V. Rittenberg, Stochastic models on a ring and quadratic algebras. The three species diffusion problem, J. Phys. A: Math. Gen. 31:833 (1998); F. C. Alcaraz, S. Dasmahapatra, and V. Rittenberg, N-species stochastic models with boundaries and quadratic algebras, J. Phys. A: Math. Gen. 31:845 (1998).
A. Schadschneider and M. Schrekenberg, Cellular automaton models and traffic flow, J. Phys. A: Math. Gen. 26:L679 (1993).
M. R. Evans, Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics, J. Phys. A: Math. Gen. 30 (1997).
L. G. Tilstra and M. H. Ernst, Synchronous asymmetric exclusion processes, J. Phys. A31:5033 (1998).
N. Rajewsky, Exact results for one-dimensional stochastic processes, Dissertation (Universität zu Köln, 1997).
N. Rajewsky, L. Santen, A. Schadschneider, and M. Schreckenberg, The asymmetric exclusion model with time continous and time non-continous update, in Proceedings of the 1996 Conference on Scientific Computing in Europe, H. J. Ruskin, R. O'Connor, Y. Feng, eds. (published by Centre for Teaching Computing, Dublin City University, 1996).
A. Schadschneider and M. Schreckenberg, Car-oriented mean-field theory for traffic flow models, J. Phys. A: Math. Gen. 30:L69 (1997).
J. Krug and P. A. Ferrari, Phase transitions in driven diffusive systems with random rates, J. Phys. A: Math. Gen. 29:L465 (1996).
D. V. Ktitarev, D. Chowdhury, and D. E. Wolf, Stochastic traffic model with random deceleration probabilities: queueing and power-law gap distribution, J. Phys. A: Math. Gen. 30:L221 (1997).
S. Sandow, Partially asymmetric exclusion process with open boundaries, Phys. Rev. E50:2660 (1994).
N. Ito, Discrete-time and single-spin-flip dynamics of the Ising chain, Prog. Theor. Phys. 83:682 (1990).
B. Eisenblätter, L. Santen, A. Schadschneider, and M. Schreckenberg, Jamming transition in a cellular automaton model for traffic flow, Phys. Rev. E57:1309 (1998).
A. Schadschneider and M. Schreckenberg, Garden of Eden states in traffic models, J. Phys. A: Math. Gen. 31:L225 (1998).
B. Chopard, P. O. Luthi, and P.-A. Queloz, Cellulaz automata model of car traffic in a two-dimensional street network, J. Phys. A: Math. Gen. 29:2325 (1996); B. Chopard, in Proceedings of the Workshop on “Traffic and Granular Flow 1997” (to be published).
J. Esser and M. Schreckenberg, Microscopic simulation of urban traffic based on cellular automata, Int. J. Mod. Phys. C8:1025 (1997).
M. Ricker and K. Nagel, Experiences with a simplified microsimulation for the Dallas/Fort Worth area, Int. J. Mod. Phys. C8:483 (1997).
K. Nagel and C. L. Barrett, Using microsimulation feedback for trip adaptation for realistic traffic in Dallas, Int. J. Mod. Phys. C8:505 (1997).
S. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundary conditions, Phys. Rev. E54:2409 (1996).
N. Rajewsky, R. Raupach, and J. Zittartz, in preparation.
A. K. Kolezhuk and H.-J. Mikeska, A new family of models with exact ground states connecting smoothly the S = 1/2 dimer and S = 1 Haldane phases of 1D spin chains, Phys. Rev. B56:R11380 (1997) (and refs. therein).
J. Zittartz, in preparation
R. K. P. Zia and B. Schmittmann, Surprises in simple driven systems: Phase transitions in a three-state model, Int. J. Mod. Phys. C7:409 (1996).
T. Sasamoto, S. Mori, and M. Wadati, One-dimensional asymmetric exclusion model with open boundaries, J. Phys. Soc. Jpn. 65:2000 (1996).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Rajewsky, N., Santen, L., Schadschneider, A. et al. The Asymmetric Exclusion Process: Comparison of Update Procedures. Journal of Statistical Physics 92, 151–194 (1998). https://doi.org/10.1023/A:1023047703307
Issue Date:
DOI: https://doi.org/10.1023/A:1023047703307