Abstract
This contribution deals with an efficient method for the numerical realization of the exterior and interior Bernoulli free boundary problems. It is based on a shape optimization approach. The state problems are solved by a fictitious domain solver using boundary Lagrange multipliers.
Similar content being viewed by others
References
A. Acker, “An extremal problem involving distributed resistance,” SIAM J. Math. Anal., vol. 12, pp. 169-172, 1981.
D. Begis and R. Glowinski, “Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimale.Méthodes de résolution des problémes approachés,” Applied Mathematics & Optimization, vol. 2, pp. 130-169, 1975.
F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag: New York, 1991.
D. Chenais, “On the existence of a solution in a domain identification problem,” J. Math. Anal. Appl., vol. 52, pp. 189-214, 1975.
M.C. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus and Optimization, SIAM series in Advances in Design and Control, Philadelphia, 2001.
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland: Amsterdam, 1976.
A. Fasano, “Some free boundary problems with industrial applications,” in Shape Optimization and Free Boundaries, M.C. Delfour and G. Sabidussi (Eds.), 1992, pp. 113-142.
M. Flucher and M. Rumpf, “Bernoulli's free boundary problem, qualitative theory and numerical approximation,” J. Reine Angew., vol. 486, pp. 165-204, 1997.
A. Friedman, “Free boundary problem in fluid dynamics, Astérisque, Soc. Math. France, vol. 118, pp. 55-67, 1984.
V. Girault and R. Glowinski, “Error analysis of a fictitious domain method applied to a Dirichlet problem,” Japan J. Indust. Appl. Math., vol. 12, pp. 487-514, 1995.
R. Glowinski, T. Pan, and J. Periaux, “A fictitious domain method for Dirichlet problem and applications,” North-Holland J. Appl. Mech. and Eng., vol. 111, pp. 283-303, 1994.
J. Haslinger, K.H. Hoffmann, and R. Mäkinen, “Optimal control/dual approach for the numerical solution of a dam problem,” Advances in Math. Sciences and Appl., vol. 2, pp. 189-213, 1993.
J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design. 2nd edition, J. Wiley & Sons: Chichester, 1996.
R.W. Hockney, A fast direct solution of Poisson's equation using Fourier Analysis. J. Assoc. Comput. Mach., vol. 12, pp. 95-113, 1965.
L. Holzleitner, “Hausdorff convergence of domains and their boundaries for shape optimal design,” Control and Cybernetics, vol. 30, no. 1, pp. 23-44, 2001.
K. Ito, K. Kunisch, and G. Peichl, “On the regularization and approximation of saddle point problems without inf-sup condition,” Computational and Applied Mathematics, vol. 21, pp. 245-274, 2002.
I. Křivý and J. Tvrdík, “The controlled random search algorithm in optimizing regression models,” Comput. Statist. and Data Anal., no. 20, pp. 229-234, 1995.
J. Nečcas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson: Paris, 1967.
J.A. Nelder and R. Mead, “A simplex method for function minimization,” Computer J., no. 7, pp. 308-313, 1964.
O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics, Springer-Verlag: New York, 1984.
W.L. Price, “A controlled random search procedure for global optimisation,” Computer J., no. 20, pp. 367-370, 1976.
R.A. Sweet, “A generalized cyclic reduction algorithm,” SIAM J. Numer. Anal., vol. 11, pp. 206-220, 1974.
R.A. Sweet, “A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimension,” SIAM J. Numer. Anal., vol. 14, pp. 706-720, 1977.
T. Tiihonen, “Shape optimization and trial methods for free boundary problems,”M2AN, vol. 31, pp. 805-825, 1997.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Haslinger, J.T., Kunisch, K. & Peichl, G. Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type. Computational Optimization and Applications 26, 231–251 (2003). https://doi.org/10.1023/A:1026095405906
Issue Date:
DOI: https://doi.org/10.1023/A:1026095405906