Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This contribution deals with an efficient method for the numerical realization of the exterior and interior Bernoulli free boundary problems. It is based on a shape optimization approach. The state problems are solved by a fictitious domain solver using boundary Lagrange multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Acker, “An extremal problem involving distributed resistance,” SIAM J. Math. Anal., vol. 12, pp. 169-172, 1981.

    Google Scholar 

  2. D. Begis and R. Glowinski, “Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimale.Méthodes de résolution des problémes approachés,” Applied Mathematics & Optimization, vol. 2, pp. 130-169, 1975.

    Google Scholar 

  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag: New York, 1991.

    Google Scholar 

  4. D. Chenais, “On the existence of a solution in a domain identification problem,” J. Math. Anal. Appl., vol. 52, pp. 189-214, 1975.

    Google Scholar 

  5. M.C. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus and Optimization, SIAM series in Advances in Design and Control, Philadelphia, 2001.

  6. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland: Amsterdam, 1976.

    Google Scholar 

  7. A. Fasano, “Some free boundary problems with industrial applications,” in Shape Optimization and Free Boundaries, M.C. Delfour and G. Sabidussi (Eds.), 1992, pp. 113-142.

  8. M. Flucher and M. Rumpf, “Bernoulli's free boundary problem, qualitative theory and numerical approximation,” J. Reine Angew., vol. 486, pp. 165-204, 1997.

    Google Scholar 

  9. A. Friedman, “Free boundary problem in fluid dynamics, Astérisque, Soc. Math. France, vol. 118, pp. 55-67, 1984.

    Google Scholar 

  10. V. Girault and R. Glowinski, “Error analysis of a fictitious domain method applied to a Dirichlet problem,” Japan J. Indust. Appl. Math., vol. 12, pp. 487-514, 1995.

    Google Scholar 

  11. R. Glowinski, T. Pan, and J. Periaux, “A fictitious domain method for Dirichlet problem and applications,” North-Holland J. Appl. Mech. and Eng., vol. 111, pp. 283-303, 1994.

    Google Scholar 

  12. J. Haslinger, K.H. Hoffmann, and R. Mäkinen, “Optimal control/dual approach for the numerical solution of a dam problem,” Advances in Math. Sciences and Appl., vol. 2, pp. 189-213, 1993.

    Google Scholar 

  13. J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design. 2nd edition, J. Wiley & Sons: Chichester, 1996.

  14. R.W. Hockney, A fast direct solution of Poisson's equation using Fourier Analysis. J. Assoc. Comput. Mach., vol. 12, pp. 95-113, 1965.

    Google Scholar 

  15. L. Holzleitner, “Hausdorff convergence of domains and their boundaries for shape optimal design,” Control and Cybernetics, vol. 30, no. 1, pp. 23-44, 2001.

    Google Scholar 

  16. K. Ito, K. Kunisch, and G. Peichl, “On the regularization and approximation of saddle point problems without inf-sup condition,” Computational and Applied Mathematics, vol. 21, pp. 245-274, 2002.

    Google Scholar 

  17. I. Křivý and J. Tvrdík, “The controlled random search algorithm in optimizing regression models,” Comput. Statist. and Data Anal., no. 20, pp. 229-234, 1995.

  18. J. Nečcas, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson: Paris, 1967.

    Google Scholar 

  19. J.A. Nelder and R. Mead, “A simplex method for function minimization,” Computer J., no. 7, pp. 308-313, 1964.

    Google Scholar 

  20. O. Pironneau, Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics, Springer-Verlag: New York, 1984.

    Google Scholar 

  21. W.L. Price, “A controlled random search procedure for global optimisation,” Computer J., no. 20, pp. 367-370, 1976.

    Google Scholar 

  22. R.A. Sweet, “A generalized cyclic reduction algorithm,” SIAM J. Numer. Anal., vol. 11, pp. 206-220, 1974.

    Google Scholar 

  23. R.A. Sweet, “A cyclic reduction algorithm for solving block tridiagonal systems of arbitrary dimension,” SIAM J. Numer. Anal., vol. 14, pp. 706-720, 1977.

    Google Scholar 

  24. T. Tiihonen, “Shape optimization and trial methods for free boundary problems,”M2AN, vol. 31, pp. 805-825, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslinger, J.T., Kunisch, K. & Peichl, G. Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type. Computational Optimization and Applications 26, 231–251 (2003). https://doi.org/10.1023/A:1026095405906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026095405906

Navigation