Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An a Posteriori Error Estimate for a Semi-Lagrangian Scheme for Hamilton–Jacobi Equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We present an a posteriori estimate for a first order semi-Lagrangian method for Hamilton–Jacobi equations. The result requires piecewise C 1,1 regularity of the viscosity solution and is stated for the Bellman equation related to the infinite horizon problem, although it can be applied to more general Hamilton–Jacobi equations with convex Hamiltonians. This estimate suggests different numerical indicators that can be used to construct an adaptive algorithm for the approximation of the viscosity solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abgrall, Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes, Comm. Pure Appl. Math. 49 (1996) 1339–1373.

    Google Scholar 

  2. S. Albert, B. Cockburn, D. French and T. Peterson, A posteriori error estimates for general numerical methods for Hamilton–Jacobi equations. Part I: The steady state case, Preprint (2001).

  3. M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations (Birkhäuser, Boston, 1997).

    Google Scholar 

  4. M.W. Bern, J.E. Flaherty and M. Luskin, Grid Generation and Adaptive Algorithms (Springer, New York, 1999).

    Google Scholar 

  5. F. Camilli and L. Grüne, Numerical Approximation of the Maximal solutions for a class of degenerate Hamilton–Jacobi equations, SIAM J. Numer. Anal. 38 (2000) 1540–1560.

    Google Scholar 

  6. M.G. Crandall and P.L. Lions, Two approximations of solutions of Hamilton–Jacobi equations, Math. Comp. 43 (1984) 1–19.

    Google Scholar 

  7. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, in: Acta Numerica (Cambridge Univ. Press, Cambridge, 1995) pp. 105–158.

    Google Scholar 

  8. M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim. 15 (1987) 1–13 and 23 (1991) 213–214.

    Google Scholar 

  9. M. Falcone and R. Ferretti, Discrete-time high-order schemes for viscosity solutions of Hamilton–Jacobi equations, Numer. Math. 67 (1994) 315–344.

    Google Scholar 

  10. M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods, J. Comput. Phys. (2001) to appear.

  11. M. Falcone and C. Makridakis, eds., Numerical Methods for Viscosity Solutions and Applications (World Scientific, Singapore, 2001).

    Google Scholar 

  12. L. Grüne, An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation, Numer. Math. 75 (1997) 319–337.

    Google Scholar 

  13. L. Grüne, Adaptive grid generation for evolutive Hamilton–Jacobi–Bellman equations, in [11], pp. 319–337.

  14. C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (1999) 666–690.

    Google Scholar 

  15. G. Kossioris, C. Makridakis and P.E. Souganidis, Finite volume schemes for Hamilton–Jacobi equations, Numer. Math. 83 (1999) 427–442.

    Google Scholar 

  16. C.T. Lin and E. Tadmor, High-resolution nonoscillatory central schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2163–2186.

    Google Scholar 

  17. P.L. Lions, Generalized Solutions of Hamilton–Jacobi Equations (Pitman, London, 1982).

    Google Scholar 

  18. S. Osher and C.W. Shu, High-order essentially non oscillatory schemes for Hamilton–Jacobi equations, SIAM J. Numer. Anal. 28 (1991) 907–922.

    Google Scholar 

  19. M. Sagona, Numerical methods for degenerate Eikonal type equations and applications, Tesi di Dottorato, Dipartimento di Matematica, Università di Napoli “Federico II” (November 2001).

  20. M. Sagona and A. Seghini, An adaptive scheme on unstructured grids for the shape-from-shading problem, in [11].

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagona, M., Seghini, A. An a Posteriori Error Estimate for a Semi-Lagrangian Scheme for Hamilton–Jacobi Equations. Numerical Algorithms 33, 453–460 (2003). https://doi.org/10.1023/A:1025509315400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025509315400

Navigation