Abstract
Quantitative Structure–Activity Relationship (QSAR) models are used increasingly to screen chemical databases and/or virtual chemical libraries for potentially bioactive molecules. These developments emphasize the importance of rigorous model validation to ensure that the models have acceptable predictive power. Using k nearest neighbors (kNN) variable selection QSAR method for the analysis of several datasets, we have demonstrated recently that the widely accepted leave-one-out (LOO) cross-validated R2 (q2) is an inadequate characteristic to assess the predictive ability of the models [Golbraikh, A., Tropsha, A. Beware of q2! J. Mol. Graphics Mod. 20, 269-276, (2002)]. Herein, we provide additional evidence that there exists no correlation between the values of q 2 for the training set and accuracy of prediction (R 2) for the test set and argue that this observation is a general property of any QSAR model developed with LOO cross-validation. We suggest that external validation using rationally selected training and test sets provides a means to establish a reliable QSAR model. We propose several approaches to the division of experimental datasets into training and test sets and apply them in QSAR studies of 48 functionalized amino acid anticonvulsants and a series of 157 epipodophyllotoxin derivatives with antitumor activity. We formulate a set of general criteria for the evaluation of predictive power of QSAR models.
Similar content being viewed by others
References
Tropsha, A., Cho, S. J., and Zheng, W. In: Rational Drug Design: Novel Methodology and Practical Applications (Parrill, A.L. and Reddy, M.R., Eds), ACS Symposium Series No 719, 1999, pp. 198-211.
Cho, S.J., Zheng, W., Tropsha, A.J., Chem. Inf. Comput. Sci., 38 (1998) 259.
Reynolds, C.H., Druker, R., Pfahler, L.B. J. Chem. Inf. Comput. Sci. 38 (1998) 305.
Gussio, R., Pattabiraman, N., Kellogg, G.E., Zaharevitz, D.W., Methods 14 (1998) 255.
Belkina, N.V., Skvortsov, V.S., Ivanov, A.S., Archakov, A.I., Vopr. Med. Khim. 44 (1998) 464.
Tropsha, A., Zheng, W., Curr. Pharm. Des. 7 (2001) 599.
Clementi, S., Wold, S. In: van de Waterbeemd, H. (Ed.), Chemometrics Methods in Molecular Design, VCH, 1995, pp. 319-338.
Wold, S. In: van de Waterbeemd, H. (Ed.), Chemometrics Methods in Molecular Design, VCH, 1995, pp. 195-218.
Zheng, W., Tropsha, A., J. Chem. Inf. Comput. Sci. 40 (2000) 185.
Hoffman, B., Cho, S.J., Zheng, W., Wyrick, S., Nichols, D.E., Mailman, R.B., Tropsha, A., J. Med. Chem. 42 (1999) 3217.
Ajay, A., J. Med. Chem. 36 (1993) 3565.
Golbraikh, A., Tropsha, A., J. Mol. Graphics Mod. 20 (2002) 269.
Wold, S., Eriksson, L. In: Chemometrics Methods in Molecular Design, van de Waterbeemd, H. (Ed.), VCH, 1995, pp. 309-318.
Gironés, X., Gallegos, A., Ramon, C.-D., J. Chem Inf. Comput. Sci. 46 (2000) 1400.
Bordás, B., Kömíves, T., Szántó, Z., Lopata, A., J. Agricult. Food Chem. 48 (2000) 926.
Fan, Y., Shi, L.M., Kohn, K.W., Pommier, Y., Weinstein, J.N., J. Med. Chem. 44 (2001) 3254.
Randíc, M., Basak, S.C., J. Chem. Inf. Comput. Sci. 40 (2000) 899.
Suzuki, T., Ide, K., Ishida, M., Shapiro, S., J. Chem. Inf. Comput. Sci. 41 (2001) 718.
Recanatini, M., Cavalli, A., Belluti, F., Piazzi, L., Rampa, A., Bisi, A., Gobbi, S., Valenti, P., Andrisano, V., Bartolini, M., Cavrini, V., J. Med. Chem. 43 (2000) 2007.
Morón, J.A., Campillo, M., Perez, V., Unzeta, M., Pardo, L., J. Med. Chem. 43 (2000) 1684.
Kubinyi, H., Hamprecht, F.A., Mietzner, T., J. Med. Chem. 41 (1998) 2553.
Novellino, E., Fattorusso, C., Greco, G., Pharm. Acta Helv. 70 (1995) 149.
Norinder, U., J. Chemomet. 10 (1996) 95.
Tropsha, A., Gramatica, P., Gombar, V., Quant. Struct. Act. Relat. (2002) (in press).
Golbraikh, A., Tropsha, A., J. Comput.-Aided Molec. Des., 16 (2002) 357.
Snarey, M., Terrett, N.K., Willett, P., Wilton, D.J., J. Mol. Graphics Mod. 15 (1997) 372.
Shen, M., LeTiran, A., Xiao, Y.-D., Golbraikh, A., Kohn, H., Tropsha, A., J. Med. Chem. 45 (2002) 2811.
Xiao, Z., Xiao, Y.-D., Feng, A., Golbraikh, A., Tropsha, A., Lee, K.-H., J. Med. Chem. 45 (2002) 2294.
Molconn-Z. http://www.eslc.vabiotech.com/
Golbraikh, A., J. Chem. Inf. Comput. Sci. 40 (2000) 414.
Sachs, L. Applied Statistics. A Handbook of Techniques. Springer-Verlag, 1984, p. 349.
Xiao, Z. Design and Synthesis of Etoposide-Related Topo II Inhibitors by Conventional and Computational Approaches. Ph.D. Dissertation. The University of North Carolina at Chapel Hill, 2003.
Zhang, Y., Lee, K.H., Chin. Pharm. J. 46 (1994) 319.
Cho, S.J., Tropsha, A., Suffness, M., Cheng, Y.C., Lee, K.H., J. Med. Chem. 39 (1996) 1383.
Xie, D., Tropsha, A., Schlick, T., J. Chem. Inf. Comput. Sci., 40 (2000) 167.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Golbraikh, A., Shen, M., Xiao, Z. et al. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17, 241–253 (2003). https://doi.org/10.1023/A:1025386326946
Issue Date:
DOI: https://doi.org/10.1023/A:1025386326946