Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study an Eulerian formulation for solving partial differential equations (PDE) on a moving interface. A level set function is used to represent and capture the moving interface. A dual function orthogonal to the level set function defined in a neighborhood of the interface is used to represent some associated quantity on the interface and evolves according to a PDE on the moving interface. In particular we use a convection diffusion equation for surfactant concentration on an interface passively convected in an incompressible flow as a model problem. We develop a stable and efficient semi-implicit scheme to remove the stiffness caused by surface diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., and Sethian, J. A. (1995). A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269.

    Google Scholar 

  2. Adalsteinsson, D., and Sethian, J. A. (1999). The fast construction of extension velocities in the level set methods. J. Comput. Phys. 148, 2.

    Google Scholar 

  3. Adalsteinsson, D., and Sethian, J. A. Transport and Diffusion of Material Quantities on Propagating Interfaces via Level Set Methods, preprint.

  4. Aris, R. (1962). Vectors, Tensors, and the Basic Equations of Fluid, Prentice–Hall, Englewood Cliffs, NJ.

    Google Scholar 

  5. Batchlor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge University Press.

  6. Burchard, P., Cheng, L.-T., Merriman, B., and Osher, S. (2001). Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170(2), 720-741.

    Google Scholar 

  7. Ceniceros, H., and Hou, T. Y. (2001). An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172(2), 1-31.

    Google Scholar 

  8. Bertalmio, M., Cheng, L.-T., Osher, S., and Sapiro, G. (2001). Variational problems and partial differential equations on implicit surfaces: The framework and examples in image processing and pattern formation. J. Comput. Phys. 174, 759-780.

    Google Scholar 

  9. Chen, S., Merriman, B., Osher, S., and Smereka, P. (1997). A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8.

    Google Scholar 

  10. Herring, C. (1951). Surface diffusion as a motivation for sintering. In The Physics of Powder Metallurgy, McGraw–Hill, New York, NY.

    Google Scholar 

  11. Hunter, J. K., Li, Z., and Zhao, H. K. Reactive autophobic spreading of drops, to appear in J. Comput. Phys.

  12. Hou, T. Y., Li, Z., Osher, S., and Zhao, H. (1997). A hybrid method for moving interface problems with applications to the Hele-Shaw flows. J. Comput. Phys. 134, 236.

    Google Scholar 

  13. James, A., Lowengrub, J., and Seigel, M. Distribution formulation of interfaces with surfactant, preprint.

  14. Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228.

    Google Scholar 

  15. Jiang, G.-S., and Peng, D. (2000). Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126.

    Google Scholar 

  16. Li, X., and Pozrikidis, C. (1997). Effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341, 441-454.

    Google Scholar 

  17. Li, Z.-L., Zhao, H.-K., and Gao, H.-J. (1999). A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152, 281.

    Google Scholar 

  18. Mullins, W. W. (1995). Mass transport at interfaces in single component system. Metallurgical and Materials Trans. A 26, 1917-1925.

    Google Scholar 

  19. Nichols, F. A., and Mullins, W. W. (1965). Surface (interface) and volume-diffusion contributions to morphological changes driven by capillarity. Trans. Metall. Soc. AIME 233, 1840-1847.

    Google Scholar 

  20. Osher, S., and Sethian, J. A. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12.

    Google Scholar 

  21. Osher, S., and Shu, C. W. (1991). High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907.

    Google Scholar 

  22. OsherS., and Fedkiw, R. P. (2001). Level set methods: An overview and some recent results. J. Comput. Phys. 169, 463.

    Google Scholar 

  23. Peng, D., Merriman, B., Osher, S., Zhao, H.-K., and Kang, M. (1999). A PDE-based fast local level set method. J. Comput. Phys. 155, 410.

    Google Scholar 

  24. Saad, Y. (1996). Iterative methods for sparse linear systems, PWS.

  25. Scriven, L. E. (1960). Chem. Eng. Sci. 12, 98.

    Google Scholar 

  26. Sethian, J. A. (2001). Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169, 503.

    Google Scholar 

  27. Shu, C.-W. (1988). Total-variation-diminishing time discretization. SIAM J. Sci. Stat. Comput. 9, 1073.

    Google Scholar 

  28. Stone, H. A. (1989). A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2(1), 111.

    Google Scholar 

  29. Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differential Equations, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific grove, California.

    Google Scholar 

  30. Sussman, M., Smereka, P., and Osher, S. (1994). A levelset approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146-159.

    Google Scholar 

  31. Waxman, A. M. (1984). Stud. Appl. Math. 70, 63.

    Google Scholar 

  32. Wong, H., Rumschitzki, D., and Maldarelli, C. (1996). On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8(11), 3203.

    Google Scholar 

  33. Zhao, H., Chan, T., Merriman, B., and Osher, S. (1996). A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, JJ., Zhao, HK. An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface. Journal of Scientific Computing 19, 573–594 (2003). https://doi.org/10.1023/A:1025336916176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025336916176

Navigation