Abstract
This paper applies the evolution of GP teams to different classification and regression problems and compares different methods for combining the outputs of the team programs. These include hybrid approaches where (1) a neural network is used to optimize the weights of programs in a team for a common decision and (2) a realnumbered vector (the representation of evolution strategies) of weights is evolved with each term in parallel. The cooperative team approach results in an improved training and generalization performance compared to the standard GP method. The higher computational overhead of team evolution is counteracted by using a fast variant of linear GP.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
W. Banzhaf P. Nordin R. Keller, and F. Francone, Genetic Programming-An Introduction. On the Automatic Evolution of Computer Programs and its Application, dpunkt/Morgan Kaufman: Heidelberg/San Francisco, 1998.
M. Brameier and W. Banzhaf, “A comparison of linear genetic programming and neural networks in medical data mining,” IEEE Trans. Evolutionary Comput., vol. 5(1), pp. 17-26, 2001.
L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Trans. Pattern Analysis and Mach, Intell., vol. 12(10), pp. 993-1001, 1990.
T. Haynes S. Sen D. Schoenefeld, and R. Wainwright, “Evolving a team,” in Working Notes for the AAAI Symposium on Genetic Programming, MIT Press: Cambridge, MA, 1995.
T. Haynes and S. Sen, “Crossover operators for evolving a team,” in Genetic Programming 1997: Proc. Second Ann. Conf., John R. Koza Kalyanmoy Deb Marco Dorigo David B. Fogel Max Garzon Hitoshi Iba, and Rick L. Riolo (eds.), Morgan Kaufmann: San Francisco, CA, 1997, pp. 162-167.
J. Koza, Genetic Programming, MIT Press: Cambridge, MA, 1992.
A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation, and active learning,” in Advances in Neural Information Processing Systems, G. Tesauro D. S. Touretzky and T. K. Leen (eds.), vol. 7, MIT Press: Cambridge, MA, 1995, pp. 231-238.
S. Luke and L. Spector, “Evolving teamwork and coordination with genetic programming,” in Genetic Programming 1996: Proc. First Ann. Conf., J. R. Koza D. E. Goldberg David B. Fogel, and Rick L. Riolo (eds.), MIT Press: Cambridge, MA, 1996, pp. 150-156.
P. Nordin, “A compiling genetic programming system that directly manipulates the machine-code,” in Advances in Genetic Programming, K. E. Kinnear (ed.), MIT Press, Cambridge, MA, 1994, pp. 311-331.
M. P. Perrone and L. N. Cooper, “When networks disagree: Ensemble methods for neural networks,” in Neural Network for Speech and Image Processing, R. J. Mammone (ed.), Chapman-Hall: London, 1993, pp. 126-142.
M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning: The RPROP algorithm,” in Proc. IEEE Int. Conf. Neural Networks, San Francisco, CA, 1993, pp. 586-591.
H.-P. Schwefel, Evolution and Optimum Seeking, Wiley: New York, 1995.
R. L. Somorjai A. E. Nikulin N. Pizzi D. Jackson G. Scarth B. Dolenko H. Gordon P. Russell C. L. Lean L. Delbridge C. E. Mountford, and I. C. P. Smith, “Computetized consensus diagnosis-A classification strategy for the robust analysis of MR spectra. 1. Application to H-l Spectra of Thyroid Neoplasma,” Magnetic Resonance in Medicine, vol. 33, pp. 257-263, 1995.
T. Soule, “Voting Teams: A cooperative approach to non-typical problems using genetic programming,” in Proc. Int. Conf. Genetic and Evolutionary Comput., W. Banzhaf J. Daida A. E. Eiben M. H. Garzon V. Honavar M. Jakiela, and R. E. Smith (eds.), Morgan Kaufmann: San Francisco, CA, 1999, pp. 916-922.
T. Soule, “Heterogeneity and Specialization in Evolving Teams,” in Proc. Second Int. Conf. Genetic and Evolutionary Comput., Darrell Whitley David Goldberg Erick Cantu-Paz Lee Spector Ian Parmee, and Hans-Georg Beyer (eds.), Morgan Kaufmann: San Francisco, CA, 2000, pp. 778-785.
W. A. Tackett, Recombination, Selection and the Genetic Construction of computer programs. Ph.D. thesis, University of Southern California, Department of Electrical Engineering Systems, 1994.
D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5(2), pp. 241-260, 1992.
X. Yao and Y. Liu, “Making use of population information in evolutionary artificial neural networks,” IEEE Trans. Systems, Man and Cybernetics, vol. 28B(3), pp. 417-425, 1998.
B.-T. Zhang and J.-G. Joung, “Enhancing robustness of genetic programming at the dpecies level,” in Genetic Programming 1996: Proc. First Ann. Conf., J. R. Koza D. E. Goldberg David B. Fogel, and Rick L. Riolo (eds.), MIT Press: Cambridge, MA, 1996, pp. 336-342.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brameier, M., Banzhaf, W. Evolving Teams of Predictors with Linear Genetic Programming. Genetic Programming and Evolvable Machines 2, 381–407 (2001). https://doi.org/10.1023/A:1012978805372
Issue Date:
DOI: https://doi.org/10.1023/A:1012978805372