Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Comparability Invariance Results for Tolerance Orders

  • Published:
Order Aims and scope Submit manuscript

Abstract

We prove comparability invariance results for three classes of ordered sets: bounded tolerance orders (equivalent to parallelogram orders), unit bitolerance orders (equivalent to point-core bitolerance orders) and unit tolerance orders (equivalent to 50% tolerance orders). Each proof uses a different technique and relies on the alternate characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arditti, J. C. (1976) Graphes de comparabilité et dimension des ordres, Note de Recherches CRM 607, Centre de Recherche Mathématiques, Université Montréal.

  2. Arditti, J. C. and Jung, H. A. (1980) The dimension of finite and infinite comparability graphs, J. London Math. Soc. 21, 31-38.

    Google Scholar 

  3. Bogart, K., Fishburn, P., Isaak, G. and Langley, L. (1995) Proper and unit tolerance graphs, Discrete Appl. Math. 60, 37-51.

    Google Scholar 

  4. Bogart, K. P. and Isaak, G. (1998) Proper and unit bitolerance orders and graphs, DiscreteMath. 181, 37-51.

    Google Scholar 

  5. Dagan, I., Golumbic, M. C. and Pinter, R. Y. (1988) Trapezoid graphs and their coloring, Discrete Appl. Math. 21, 35-46.

    Google Scholar 

  6. Fishburn, P. C. and Trotter, W. T. (1999) Split semiorders, Discrete Math. 195, 111-126.

    Google Scholar 

  7. Gallai, T. (1967) Transitiv orientierbare graphen, Acta Math. Hungar. 18, 25-66.

    Google Scholar 

  8. Golumbic, M. C. and Monma, C. L. (1982) A generalization of interval graphs with tolerances, Congressus Numerantium 35, 321-331.

    Google Scholar 

  9. Golumbic, M. C. and Trenk, A. N., Tolerance Graphs, monograph in preparation.

  10. Gysin, R. (1977) Dimension transitive orientierbar graphen, Acta Math. Acad. Sci. Hungar. 29, 313-316.

    Google Scholar 

  11. Habib, M. (1984) Comparability invariants, Ann. Discrete Math. 23, 371-386.

    Google Scholar 

  12. Habib, M., Kelly, D. and Möhring, R. (1991) Interval dimension is a comparability invariant, Discrete Appl. Math. 88, 211-229.

    Google Scholar 

  13. Habib, M., Kelly, D. and Möhring, R. (1992) Comparability invariance of geometric notions of order dimension, manuscript.

  14. Kelly, D. (1986) Invariants of finite comparability graphs, Order 3, 155-158.

    Google Scholar 

  15. Langley, L. (June 1993) Interval Tolerance Orders and Dimension, PhD Thesis, Dartmouth College.

  16. Trotter, W. T. (1992) Combinatorics and Partially Ordered Sets, Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  17. Trotter, W. T., Moore, J. I. and Sumner, D. (1976) The dimension of a comparability graph, Discrete Math. 16, 361-381.

    Google Scholar 

  18. Niederle, J. (2000) Being a proper trapezoid ordered set is a comparability invariant, Order 17, 301-308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogart, K.P., Laison, J.D., Isaak, G. et al. Comparability Invariance Results for Tolerance Orders. Order 18, 281–294 (2001). https://doi.org/10.1023/A:1012291815365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012291815365

Navigation