Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Scalable Parallel Genetic Algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Genetic algorithms, search algorithms based on the genetic processes observed in natural evolution, have been used to solve difficult problems in many different disciplines. When applied to very large-scale problems, genetic algorithms exhibit high computational cost and degradation of the quality of the solutions because of the increased complexity. One of the most relevant research trends in genetic algorithms is the implementation of parallel genetic algorithms with the goal of obtaining quality of solutions efficiently. This paper first reviews the state-of-the-art in parallel genetic algorithms. Parallelization strategies and emerging implementations are reviewed and relevant results are discussed. Second, this paper discusses important issues regarding scalability of parallel genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alander, J. T. (1999). Indexed Bibliograhy of Distributed Genetic Algorithms. Report 94-1-PARA, University of Vaasa, Department of Information Technology and Production Economics. Available via ftp://ftp.uwasa.fi/cs/report94-1/gaPARAbib.ps.Z

  • Amdahl, G. M. (1967). The Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In Proceedings of The AFIPS Conference, 483-485.

  • Belding, T. C. (1995). The Distributed Genetic Algorithm Revisited. In Proceedings of The Sixth International Conference on Genetic Algorithms, 114-121. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Bianchini, R., Brown, C. M., Cierniak M. & Meira, W. (1995). Combining Distributed Populations and Periodic Centralized Selections in Coarse-grain Parallel Genetic Algorithms. Artificial Neural Nets and Genetic Algorithms, 483-486. New York: Springer-Verlag.

    Google Scholar 

  • Braun, H. C. (1990). On Solving Travelling Salesman Problems by Genetic Algorithms. In Schwefel, H. & Manner, R. (eds.) Parallel Problem Solving from Nature, 129-133. Berlin: Springer-Verlag.

    Google Scholar 

  • Caldwell, C. & Johnston, V. S. (1991). Tracking a Criminal Suspect Through “Face-Space” with a Genetic Algorithm. In Proceedings of The Fourth International Conference on Genetic Algorithms, 416-421.

  • CantÚ-Paz, E. (1998). A Markov Chain Analysis of Parallel Genetic Algorithms with Arbitrary Topologies and Migration Rates. IlliGAL Report No. 98010, University of illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  • Cohoon, J. P., Martin, W. N. & Richards, D. S. (1987). Punctuated Equilibria: A Parallel Genetic Algorithm. In Proceedings of The Second International Conference on Genetic Algorithms, 148-154. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Davis, L. D. (1991). The Handbook of Genetic Algorithms. Van Nostrand Reinhold: New York, NY.

    Google Scholar 

  • East, I. R. & Rowe, J. (1996). Effects of Isolation in a Distributed Population Genetic Algorithm. Parallel Problem Solving from Nature, 408-419. Berlin: Springer-Verlag.

    Google Scholar 

  • Fourman, M. P. (1985). Compaction of Symbolic Layout Using Genetic Algorithms. In Proceedings of the First International Conference on Genetic Algorithms, 141-153.

  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley: New York, NY.

    Google Scholar 

  • Goodman, E. D. (1996). An Introduction to GALOPPS v3.2, TR 96-07-01, GARAGe, I. S. Lab., Michigan State University. Available at ftp:// isl.msu.edu/pub/GA.

  • Gordon, V. S., Whitley, D. & Böhm, A. (1992). Dataflow parallelism in genetic algorithms. In Manner, R. & Manderick D. (eds.) Parallel Problem Solving from nature. 2, 533-542. Amsterdam: Elsevier Science.

    Google Scholar 

  • Gordon, V. S. & Whitley, D. (1993). Serial and Parallel Genetic Algorithms as Function Optimizers. In proceedings of The Fifth International Conference on Genetic Algorithms. 177-183, San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Gordon, V. S. (1994). Locality in Genetic Algorithms. In proceedings of The First IEEE Conference on Evolutionary Computation, 428-432. Piscataway, NJ: IEEE Service Center.

    Google Scholar 

  • Gorges-Schleuter, M. (1989). ASPARAGOS an Asynchronous Parallel Genetic Optimization Strategy. In Proceedings of The Third International Conference on Genetic Algorithms, 422-427.

  • Gorges-Schleuter, M. (1991). Explicit Parallelism of Genetic Algorithms Trough Population Structures. In Schwefel, H. & Manner, R. (eds.) Parallel Problem Solving from Nature, 150-159. New York: Springer-Verlag.

    Google Scholar 

  • Gorges-Schleuter, M. (1997). Asparagos96 and the Traveling Salesman Problem. In Proceedings of The Fourth International Conference on Evolutionary Computation, 171-174, IEEE Press.

  • Grama, A., Gupta, A. & Kumar, V. (1993). Isoefficiency: Measuring the Scalability of Parallel Algorithms and Architectures. IEEE Parallel and Distributed Technology 1(3): 12-21.

    Google Scholar 

  • Grefenstette, J. J. (1990). A User Guide to GENESIS Version 5.0, Navy Center for Applied Research in Artificial Intelligence, Washington D.C.

    Google Scholar 

  • Grosso, P. B. (1985). Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model, Ph.D. diss., University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Gupta, A. & Kumar, V. (1993). Performance Properties of Large Scale Parallel Systems. Journal of Parallel and Distributed Computing, 19: 234-244.

    Google Scholar 

  • Hart, W., Baden, S., Belew, R.K. & Kohn, S. (1996). Analysis of the Numerical Effects of Parallelism on a Parallel Genetic Algorithm. In Proceedings of The tenth International Parallel Processing Symposium, 606-612.

  • Holland, J. H. (1975). Adaptation of Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI.

    Google Scholar 

  • Jin, A. Y., Leung, F. Y. & Weaver, D. F. (1997). Development of a Novel Genetic Algorithm Search Method (GAP 1.0) for Exploring Peptide Conformational Space. Journal of Computational Chemistry, 18(16): 1971-1984.

    Google Scholar 

  • Levine, D. (1995). Users Guide to the PGAPack Parallel Genetic Algorithm Library, ANL-95-18. Available at http://www.mcs.anl.gov/pgapack.html.

  • Lin, S. C., Punch, W. F. & Goodman (1994). Coarse-grained Parallel Genetic Algorithms: Categorization and New Approach. In Proceedings of The Sixth IEEE Symposium on Parallel and Distributed Processing, Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Luke, E. A., Banicescu, I. & Li, J. (1997). The Optimal Effectiveness Metric for Parallel Application Analysis, Technical Report MSU-EIRS-ERC-97-6.

  • Maini, H., Mehrotra, K., Mohan, C. & Ranka, S. (1994). Genetic algorithms for Graph Partitioning and Incremental Graph Partitioning. In Proceedings of The IEEE Supercomputing Conference.

  • Mejía-Olivera, M. & CantÚ-Paz, E. (1994). DGENESIS-Software for the Execution of Distributed Genetic Algorithms. In Proceedings of the XX Conferencia Latinoamericana de Informática, 935-46, Available at ftp://ftp.aic.nrl.navy.mil.

  • Mitchell, M. (1997). An Introduction to Genetic Algorithms. MIT Press: Cambridge, MA.

    Google Scholar 

  • Muhammad, A., Bargiela, A. & King, G. (1997). Fine-grained Parallel Genetic Algorithm: A Stochastic Optimisation Method. In Proceedings of The First World Congress on Systems Simulation, 199-203.

  • Rebaudengo, M. & Reorda, M. S. (1993). An Experimental Analysis of the Effects of Migration in Parallel Genetic Algorithms. In proceedings of The Euromicro Workshop on Parallel and Distributed Processing, 232-238, Los Alamitos, CA: IEEE Computer Society Press.

    Google Scholar 

  • Rivera-Gallego, W. (1998). A Genetic Algorithm for Circulant Euclidean Distance Matrices. Journal of Applied Mathematics and Computing 97(2-3): 197-208.

    Google Scholar 

  • Rivera-Gallego, W. (1999). A Genetic Algorithm for Solving the Euclidean Distance Matrices Completion Problem. In Proceedings of The ACM Symposium on Applied Computing, 286-290.

  • Sarma, J. & Jong, K. D. (1996). An Analysis of the Effects of Neighborhood Size and Shape on Local Selection Algorithms. In Parallel Problem Solving from Nature IV, 236-244. Berling: Springer-Verlag.

    Google Scholar 

  • Schraudolp, N. N. & Grefenstette, J. J. (1991). A User's Guide to GAUCSD 1.2, Technical Report Computer Science and Engineering Department, University of California, San Diego, CA.

    Google Scholar 

  • Shapiro, B. & Navetta, J. (1994). A Massively Parallel Genetic Algorithm for RNA Secondary Structure Prediction. Journal of Supercomputer 8: 195-207.

    Google Scholar 

  • Singh, J. P., Hennessy, J. L. & Gupta, A. (1993). Scaling Parallel Programs for Multiprocessors: Methodology and Examples. IEEE Computer 26(7): 42-50.

    Google Scholar 

  • Starkweather, T., Whitley, D. & Mathias, K. (1991). Optimization Using Distributed Genetic Algorithms. In Schwefel, H. & Manner, R. (eds.) Parallel Problem Solving from Nature, 176-185. New York: Springer-Verlag.

    Google Scholar 

  • Suzuki, J. (1993). A Markov Chain Analysis on a Genetic Algorithm, In Proceedings of The International Conference on Genetic Algorithms and Applications.

  • Tanese, R. (1989). Distributed Genetic Algorithms. In Proceedings of The Second International Conference on genetic Algorithms, 434-439.

  • Whitley, D. & Starkweather, T. (1990). GENITOR II: A Distributed Genetic Algorithm. Journal of Experimental, Theoretical and Artificial Intelligence 2: 189-214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, W. Scalable Parallel Genetic Algorithms. Artificial Intelligence Review 16, 153–168 (2001). https://doi.org/10.1023/A:1011614231837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011614231837

Navigation