Abstract
The objective of our research is to develop computer-based tools to automate the clinical evaluation of the electroencephalogram (EEG) and visual evoked potentials (VEP). This paper describes a set of solutions to support all the aspects regarding the standard procedures of the diagnosis in neurophysiology, including: (1) acquisition and real-time processing and compression of EEG and VEP signals, (2) real-time brain mapping of spectral powers, (3) classifier design, (4) automatic detection of morphologies through supervised neural networks. (5) signal analysis through fuzzy modelling, and (6) a knowledge based approach to classifier design.
Similar content being viewed by others
REFERENCES
Matousêk, M., and Peters´ en, I., Frequency analysis of the EEG in normal children and in normal adolescent. Automation of Clinical Electroencephalography (P. Kella-way and I. Peters´ en, eds.), pp. 75–102, 1973.
John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., and Kaye, H., Developmental Equations for the Electroencephalogram. Science 210:1255–1258, 1980.
Ahn, H., Prichep, L., John, E. R., Baird, H., Trepetin, M., and Kaye, H., Developmental equations reflect brain dysfunctions. Nature 210:1259–1262, 1980.
Alvarez, A., Vald´es, P., and Pascual R., EEG developmental equations confirmed for Cuban schoolchildren. Electroencephalogr. Clin. Neurophysiol. 67:330–332, 1987.
Matthis, P., Schefner, D., and Benninger, C., Spectral analysis of the EEG: comparison of various spectral parameters. Electroencephalogr. Clin. Neurophysiol. 52:218–221, 1981.
Katada, A., Ozaki, H., Suzuki, H., and Suhara, K., Developmental Characteristics of normal and mentally retarded children EEGs. Electroencephalogr. Clin. Neurophysiol. 52:192–201, 1981.
Matsuura, M., Yamamoto, K., Fukuzawa, H., et al., Age development and sex differences of various EEG elements in healthy children and adults-Quantification by a computerized wave form recognition method. Electroencephalogr. Clin. Neurophysiol. 60:394–406, 1985.
Gasser, T., Verleger, R., Bacher, P., and Sroka, L., Development of the EEG of school age children and adolescents. I. Analysis of band power. Electroencephalogr. Clin. Neurophysiol. 69:91–99, 1988.
Gasser, T., Jennen-Steinmetz, C., Stroka, L., Verleger, R., and Mocks, J., Development of the EEG of school age children and adolescents. II. topography. Electroencephalogr. Clin. Neurophysiol. 69:100–109, 1988.
Moreno, L., Pi ~ neiro, J. D., S´anchez, J. L., et al., Brain maturation estimation using neural classifiers. IEEE Transact. Biomed. Eng. 42(4):428–432, April 1995.
Allison, T., Wood, C. C., and Goff, W. R., Brain stem auditory, pattern-reversal visual and shortlatency somatosensory evoked potentials: latencies in relation to age, sex and brain and body size. Electroencephalogr. Clin. Neurophysiol. 55:619–636, 1983.
Emmerson-Hanover, R., Donald, E., Shearer, D., Creel, J., and Dustman, R. E., Pattern reversal evoked potentials: gender differences and age-related changes in amplitud and latency. Electroencephalogr. Clin. Neurophysiol. 92:93–101, 1994.
Halliday, A. M., Evoked Potentials in Clinical Testing, Churchill-Livingstone, Edingburgh, 1982.
Kriss, A., Spekreijse, H., Lunel, H., Braamhaar, I., De Waal, B.J., and Barrett, G., A comparison of pattern onset, offset and reversal responses: effects of age, gender and chek size. Evoked Potentials II. (R. H. Nodar, and C. Barber, eds.), Butterworth, Boston, MA, pp. 553–561, 1984.
Shearer, D. E., and Dustman, R. E., The pattern reversal evoked potential: the need for laboratory norms. Am. J. EEG Technol. 20:185–200, 1980.
Snyder, E.W., Dustman R. E., and Shearer, D. E., Pattern reversal evoked potential amplitudes:life span changes. Electroencephalogr. Clin. Neurophysiol. 52:429–434, 1981.
Stokard, J. J., Hughes, J. F., and Sharbrough, F. W., Visually evoked potentials to electronic pattern reversal: latency variations with gender, age and technical factors. Am. J. EEG Technol. 19:171–204, 1979.
Taylor, M. J., and Farrell, E. J., Latency, morphological and distributional changes in VEPs with various stimuli. Can. J. Neurol. Sci. 14:244, 1987.
Eeg-Oloffson, O., The development of the elcetroencephalogram in normal adolescent from the age of 16 through 21 years. Neuropediatrie. 3:11–45, 1971.
Petersen, I., and Eeg-Olofsson, O., The development of the electroencephalogram in normal children fron the age of 1 through 15 years-non paroxysmal activity. Neuropediatrie 2:247–304, 1971.
Tharp, B. R., Neonatal and pediatric electroencephalography. Electrodiagnosis in Clinical Neurology (M. Aminoff, ed.), pp. 67–117, 1980.
G., Schreiber, B., Wielinga, R., de Hoog, H., Akkermans, W., and Van de Velde, CommonKADS: A comprehensive methodology for KBS development. IEEE Expert 1994.
Vaidyanathan, P. P., Multirate Systems and Filter Banks, Prentice-Hall, NJ, Signal Processing Series, 1993.
Gersho, R., and Gray, M.,Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.
Jayant, N. S., and Noll, P., Digital Coding of Waveforms: Principles and Aplications to Speech and Video, Prentice-Hall, Englewood Cliffs: New Jersey, 1984.
Antoniol, G., and Tonella, P., EEG data compression techniques. IEEE Transactions on Biomedical Engineering, Feb. 1997.
Hush, D. R., and Horne, B. G., Progress in supervised neural networks, IEEE Signal Processing Magazine, pp. 8–39, January 1993.
Leow, W. K., and Miikkulainen, R., VISOR: Schema-based scene analysis with structured neural networks. Neural Processing Letters, 1(2):18–23 1994.
Jang, J. S. R., Sun, C.T., and Mizutani, E., Neuro-Fuzzy and Soft Computing, Prentice-Hall, Englewood Cliffs, NJ, 1997.
Turksen, I. B., Measurement of membership functions and their acquisition, Fuzzy Sets Syst. 40:5–38, 1991.
Virant, J., and Zimic, N., Fuzzy Automata with Fuzzy Relief. IEEE Transactions On Fuzzy Systems. 3(1):69–73, (1995).
Steimann, F. K., Adlassning, clinical monitoring with fuzzy Automata. Fuzzy Sets and Systems 61:37–42, 1994.
Steimann, F., The interpretation of time-varying data with DIAMON-1, Art. Intell. Med. 8:343–357, 1996.
Moreno, L., Est´ evez, J. I., Aguilar, R. M., S´anchez, J. L., Sigut, J., Pi ~ neiro, J. D., and Marichal, R., Automatic analysis of signals with symbolic content. Art. Intell. Med. 18:245–265, 2000.
Jobert, M., Schulz, H., Jahning, P., Tismer, C., Bes, F., and Escola, H., A computerized method for detecting episodes of wakefulness during sleep based on the Alpha slow-wave Index (ASI). Sleep 17(1):37–46, 1994.
Carpenter, G. A., and Grossberg, S., Learning categorizatsion, rule formation, and prediction by fuzzy neural networks. Fuzzy Logic and Neural Network Handbook, McGraw-Hill, New York, 1996.
Carpenter, G. A., and Grossberg, S., The ART of adaptive pattern recofnition by a self-organizing neural network. IEEE Computer March:77–88, 1988.
Chandrasekaran, B., Design problem solving: A task Analysis. AI Magazine, 1990.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Moreno, L., Sánchez, J.L., Mañas, S. et al. Tools for Acquisition, Processing and Knowledge-Based Diagnostic of the Electroencephalogram and Visual Evoked Potentials. Journal of Medical Systems 25, 177–194 (2001). https://doi.org/10.1023/A:1010780900068
Issue Date:
DOI: https://doi.org/10.1023/A:1010780900068