Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Tools for Acquisition, Processing and Knowledge-Based Diagnostic of the Electroencephalogram and Visual Evoked Potentials

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The objective of our research is to develop computer-based tools to automate the clinical evaluation of the electroencephalogram (EEG) and visual evoked potentials (VEP). This paper describes a set of solutions to support all the aspects regarding the standard procedures of the diagnosis in neurophysiology, including: (1) acquisition and real-time processing and compression of EEG and VEP signals, (2) real-time brain mapping of spectral powers, (3) classifier design, (4) automatic detection of morphologies through supervised neural networks. (5) signal analysis through fuzzy modelling, and (6) a knowledge based approach to classifier design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Matousêk, M., and Peters´ en, I., Frequency analysis of the EEG in normal children and in normal adolescent. Automation of Clinical Electroencephalography (P. Kella-way and I. Peters´ en, eds.), pp. 75–102, 1973.

  2. John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., and Kaye, H., Developmental Equations for the Electroencephalogram. Science 210:1255–1258, 1980.

    Google Scholar 

  3. Ahn, H., Prichep, L., John, E. R., Baird, H., Trepetin, M., and Kaye, H., Developmental equations reflect brain dysfunctions. Nature 210:1259–1262, 1980.

    Google Scholar 

  4. Alvarez, A., Vald´es, P., and Pascual R., EEG developmental equations confirmed for Cuban schoolchildren. Electroencephalogr. Clin. Neurophysiol. 67:330–332, 1987.

    Google Scholar 

  5. Matthis, P., Schefner, D., and Benninger, C., Spectral analysis of the EEG: comparison of various spectral parameters. Electroencephalogr. Clin. Neurophysiol. 52:218–221, 1981.

    Google Scholar 

  6. Katada, A., Ozaki, H., Suzuki, H., and Suhara, K., Developmental Characteristics of normal and mentally retarded children EEGs. Electroencephalogr. Clin. Neurophysiol. 52:192–201, 1981.

    Google Scholar 

  7. Matsuura, M., Yamamoto, K., Fukuzawa, H., et al., Age development and sex differences of various EEG elements in healthy children and adults-Quantification by a computerized wave form recognition method. Electroencephalogr. Clin. Neurophysiol. 60:394–406, 1985.

    Google Scholar 

  8. Gasser, T., Verleger, R., Bacher, P., and Sroka, L., Development of the EEG of school age children and adolescents. I. Analysis of band power. Electroencephalogr. Clin. Neurophysiol. 69:91–99, 1988.

    Google Scholar 

  9. Gasser, T., Jennen-Steinmetz, C., Stroka, L., Verleger, R., and Mocks, J., Development of the EEG of school age children and adolescents. II. topography. Electroencephalogr. Clin. Neurophysiol. 69:100–109, 1988.

    Google Scholar 

  10. Moreno, L., Pi ~ neiro, J. D., S´anchez, J. L., et al., Brain maturation estimation using neural classifiers. IEEE Transact. Biomed. Eng. 42(4):428–432, April 1995.

    Google Scholar 

  11. Allison, T., Wood, C. C., and Goff, W. R., Brain stem auditory, pattern-reversal visual and shortlatency somatosensory evoked potentials: latencies in relation to age, sex and brain and body size. Electroencephalogr. Clin. Neurophysiol. 55:619–636, 1983.

    Google Scholar 

  12. Emmerson-Hanover, R., Donald, E., Shearer, D., Creel, J., and Dustman, R. E., Pattern reversal evoked potentials: gender differences and age-related changes in amplitud and latency. Electroencephalogr. Clin. Neurophysiol. 92:93–101, 1994.

    Google Scholar 

  13. Halliday, A. M., Evoked Potentials in Clinical Testing, Churchill-Livingstone, Edingburgh, 1982.

    Google Scholar 

  14. Kriss, A., Spekreijse, H., Lunel, H., Braamhaar, I., De Waal, B.J., and Barrett, G., A comparison of pattern onset, offset and reversal responses: effects of age, gender and chek size. Evoked Potentials II. (R. H. Nodar, and C. Barber, eds.), Butterworth, Boston, MA, pp. 553–561, 1984.

    Google Scholar 

  15. Shearer, D. E., and Dustman, R. E., The pattern reversal evoked potential: the need for laboratory norms. Am. J. EEG Technol. 20:185–200, 1980.

    Google Scholar 

  16. Snyder, E.W., Dustman R. E., and Shearer, D. E., Pattern reversal evoked potential amplitudes:life span changes. Electroencephalogr. Clin. Neurophysiol. 52:429–434, 1981.

    Google Scholar 

  17. Stokard, J. J., Hughes, J. F., and Sharbrough, F. W., Visually evoked potentials to electronic pattern reversal: latency variations with gender, age and technical factors. Am. J. EEG Technol. 19:171–204, 1979.

    Google Scholar 

  18. Taylor, M. J., and Farrell, E. J., Latency, morphological and distributional changes in VEPs with various stimuli. Can. J. Neurol. Sci. 14:244, 1987.

    Google Scholar 

  19. Eeg-Oloffson, O., The development of the elcetroencephalogram in normal adolescent from the age of 16 through 21 years. Neuropediatrie. 3:11–45, 1971.

    Google Scholar 

  20. Petersen, I., and Eeg-Olofsson, O., The development of the electroencephalogram in normal children fron the age of 1 through 15 years-non paroxysmal activity. Neuropediatrie 2:247–304, 1971.

    Google Scholar 

  21. Tharp, B. R., Neonatal and pediatric electroencephalography. Electrodiagnosis in Clinical Neurology (M. Aminoff, ed.), pp. 67–117, 1980.

  22. G., Schreiber, B., Wielinga, R., de Hoog, H., Akkermans, W., and Van de Velde, CommonKADS: A comprehensive methodology for KBS development. IEEE Expert 1994.

  23. Vaidyanathan, P. P., Multirate Systems and Filter Banks, Prentice-Hall, NJ, Signal Processing Series, 1993.

    Google Scholar 

  24. Gersho, R., and Gray, M.,Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.

  25. Jayant, N. S., and Noll, P., Digital Coding of Waveforms: Principles and Aplications to Speech and Video, Prentice-Hall, Englewood Cliffs: New Jersey, 1984.

    Google Scholar 

  26. Antoniol, G., and Tonella, P., EEG data compression techniques. IEEE Transactions on Biomedical Engineering, Feb. 1997.

  27. Hush, D. R., and Horne, B. G., Progress in supervised neural networks, IEEE Signal Processing Magazine, pp. 8–39, January 1993.

  28. Leow, W. K., and Miikkulainen, R., VISOR: Schema-based scene analysis with structured neural networks. Neural Processing Letters, 1(2):18–23 1994.

    Google Scholar 

  29. Jang, J. S. R., Sun, C.T., and Mizutani, E., Neuro-Fuzzy and Soft Computing, Prentice-Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  30. Turksen, I. B., Measurement of membership functions and their acquisition, Fuzzy Sets Syst. 40:5–38, 1991.

    Google Scholar 

  31. Virant, J., and Zimic, N., Fuzzy Automata with Fuzzy Relief. IEEE Transactions On Fuzzy Systems. 3(1):69–73, (1995).

    Google Scholar 

  32. Steimann, F. K., Adlassning, clinical monitoring with fuzzy Automata. Fuzzy Sets and Systems 61:37–42, 1994.

    Google Scholar 

  33. Steimann, F., The interpretation of time-varying data with DIAMON-1, Art. Intell. Med. 8:343–357, 1996.

    Google Scholar 

  34. Moreno, L., Est´ evez, J. I., Aguilar, R. M., S´anchez, J. L., Sigut, J., Pi ~ neiro, J. D., and Marichal, R., Automatic analysis of signals with symbolic content. Art. Intell. Med. 18:245–265, 2000.

    Google Scholar 

  35. Jobert, M., Schulz, H., Jahning, P., Tismer, C., Bes, F., and Escola, H., A computerized method for detecting episodes of wakefulness during sleep based on the Alpha slow-wave Index (ASI). Sleep 17(1):37–46, 1994.

    Google Scholar 

  36. Carpenter, G. A., and Grossberg, S., Learning categorizatsion, rule formation, and prediction by fuzzy neural networks. Fuzzy Logic and Neural Network Handbook, McGraw-Hill, New York, 1996.

    Google Scholar 

  37. Carpenter, G. A., and Grossberg, S., The ART of adaptive pattern recofnition by a self-organizing neural network. IEEE Computer March:77–88, 1988.

  38. Chandrasekaran, B., Design problem solving: A task Analysis. AI Magazine, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, L., Sánchez, J.L., Mañas, S. et al. Tools for Acquisition, Processing and Knowledge-Based Diagnostic of the Electroencephalogram and Visual Evoked Potentials. Journal of Medical Systems 25, 177–194 (2001). https://doi.org/10.1023/A:1010780900068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010780900068

Navigation