Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Making Complex Articulated Agents Dance

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

We discuss the tradeoffs involved in control of complex articulated agents, and present three implemented controllers for a complex task: a physically-based humanoid torso dancing the Macarena. The three controllers are drawn from animation, biological models, and robotics, and illustrate the issues of joint-space vs. Cartesian space task specification and implementation. We evaluate the controllers along several qualitative and quantitative dimensions, considering naturalness of movement and controller flexibility. Finally, we propose a general combination approach to control, aimed at utilizing the strengths of each alternative within a general framework for addressing complex motor control of articulated agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. G. Atkeson, “Learning Arm Kinematics and Dynamics,” Annual Review of Neuroscience vol. 12 pp. 157-183, 1989.

    Google Scholar 

  2. C. G. Atkeson and J. M. Hollerbach, “Kinematic Features of Unrestrained Vertical Arm Movements,” Journal of Neuroscience vol. 5 pp. 2318-2330, 1985.

    Google Scholar 

  3. N. I. Badler, B. A. Barsky, and D. Zeltzer, eds., Making Them Move: Mechanics, Control and Animation of Articulated Figures, Morgan Kaufmann Publishers: San Mateo, CA, 1991.

    Google Scholar 

  4. D. R. Baker and C. W. Wampler II, “On the Inverse Kinematics of Redundant Manipulators,” International Journal or Robotics Research vol. 7(2) pp. 3-21, 1988.

    Google Scholar 

  5. G. Beccari and S. Stramigioli, “Impedance Control as Merging Mechanism for a Behaviour-Based Architecture,” in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1429-1434, 1998.

  6. M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T. Mason, eds., Robot Motion: Planning and Control, MIT Press, Cambridge, MA, 1982.

    Google Scholar 

  7. R. A. Brooks, Intelligence Without Reason, in Proceedings, IJCAI-91, Sydney, Australia, pp. 569-595, 1991.

  8. M. F. Cohen, Interactive Spacetime Control for Animation, in Computer Graphics (Proceedings, SIGGRAPH '92), pp. 293-301, 1992.

  9. J. E. Colgate and N. Hogan, “Robust control of dynamically interacting systems,” International Journal of Control Vol. 48(1) pp. 65-88, 1988.

    Google Scholar 

  10. J. J. Craig, Introduction to Robotics: Mechanics and Control, second edn, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  11. T. Flash and N. Hogan, “The coordination of the arm movements: an experimentally confirmed mathematical model,” Journal of Neuroscience Vol. 7 pp. 1688-1703, 1985.

    Google Scholar 

  12. S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, “Convergent force fields organized in the frog's spinal cord,” Journal of Neuroscience Vol. 13(2) pp. 467-491, 1993.

    Google Scholar 

  13. J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O'Brien, Animating Human Athletics, in Computer Graphics (Proceedings, SIGGRAPH '95), Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 71-78, 1995.

  14. N. Hogan, “Impedance Control: An Approach to Manipulation,” Journal of Dynamic Systems, Measurement, and Control Vol. 107 pp. 1-24, 1985.

    Google Scholar 

  15. M. Hollars, D. Rosenthal, and M. Sherman, SD/Fast User's Manual, Technical report, Symbolic Dynamics, Inc., 1991.

  16. M. I. Jordan and D. E. Rumelhart, “Forward Models: supervised learning with a distal teacher,” Cognitive Science Vol. 16 pp. 307-354, 1992.

    Google Scholar 

  17. C. A. Klein and C. Huang, “Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators,” IEEE Transactions on Systems, Man and Cybernetics SMC-13(3) pp. 245-250, 1983.

    Google Scholar 

  18. J. Luh, M. Walker, and R. Paul, “On-line computational scheme for mechanical manipulators,” Transactions ASME Journal of Dynamic Systems, Measurements and Control Vol. 120 pp. 69-76, 1980.

    Google Scholar 

  19. M. Marjanović, B. Scassellati, and M. Williamson, Self-Taught Visually-Guided Pointing for a Humanoid Robot, in Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and S. Wilson, (Eds), The MIT Press, Cape Cod, MA, pp. 35-44, 1996.

    Google Scholar 

  20. M. Matarić and M. Pomplun, What do People Look at When Watching Human Movement?, Technical Report CS-97-194, Brandeis University, 1997.

  21. M. J. Matarić, “Designing and Understanding Adaptive Group Behavior,” Adaptive Behavior Vol. 4(1) pp. 50-81, 1995.

    Google Scholar 

  22. M. J. Matarić, “Behavior-Based Control: Examples from Navigation, Learning, and Group Behavior,” Journal of Experimental and Theoretical Artificial Intelligence Vol. 9(2–3) pp. 323-336, 1997.

    Google Scholar 

  23. M. J. Matarić and M. Pomplun, “Fixation Behavior in Observation and Imitation of Human Movement,” Cognitive Brain Research, 7(2) 1998, 191-202.

    Google Scholar 

  24. M. J. Matarić, M. M. Williamson, J. Demiris, and A. Mohan, Behavior-Based Primitives for Articulated Control, in Fifth International Conference on Simulation of Adaptive Behavior, R. Pfiefer, B. Blumberg, J.-A. Meyer and S. W. Wilson, (Eds), MIT Press, Cambridge, MA, pp. 165-170, 1998.

    Google Scholar 

  25. M. J. Matarić, V. B. Zordan, and Z. Mason, Movement Control Methods for Complex, Dynamically Simulated Agents: Adonis Dances the Macarena, in Autonomous Agents, ACM Press, Minneapolis, St. Paul, MI, pp. 317-324, 1998.

    Google Scholar 

  26. P. Morasso, “Spatial control of arm movements,” Experimental Brain Research Vol. 42 pp. 223-227, 1981.

    Google Scholar 

  27. F. A. Mussa-Ivaldi, Nonlinear force Fields: A Distributed System of Control Primitives for Representing and Learning Movements, in Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, 1997.

  28. F. A. Mussa-Ivaldi and S. F. Giszter, “Vector field approximations: a computational paradigm for motor control and learning,” Biological Cybernetics Vol. 67 pp. 491-500, 1992.

    Google Scholar 

  29. F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi, “Linear combinations of primitives in vertebrate motor control,” Proceedings of the National Academy of Sciences Vol. 91 pp. 7534-7538, 1994.

    Google Scholar 

  30. W. L. Nelson, “Physical Principles for Economies of Skilled Movements,” Biological Cybernetics Vol. 46 pp. 135-147, 1983.

    Google Scholar 

  31. J. T. Ngo and J. Marks, Spacetime Constraints Revisited, in Computer Graphics (Proceedings, SIGGRAPH '93), J. T. Kajiya, (Ed). pp. 343-350, 1993.

  32. D. Pai, Programming Anthropoid Walking: Control and Simulation, Technical Report Computer Science Tech Report TR 90-1178, Cornell University, 1990.

  33. R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  34. M. Raibert and J. Hodgins, Animation of Dynamic Legged Locomotion, in Computer Graphics (Proceedings, SIGGRAPH '91), pp. 349-356, 1991.

  35. M. H. Raibert and J. J. Craig, “Hybrid Position/Force Control of Manipulators,” Journal of Dynamic Systems, Measurement, and Control Vol. 103 pp. 126-133, 1981.

    Google Scholar 

  36. J. K. Salisbury, Active Stiffness Control of a Manipulator in Cartesian Coordinates, in Proceedings or the 19th IEEE Conference on Decision and Control, pp. 95-100, 1980.

  37. S. Schaal, Learning from demonstration, in Advances in Neural Information Processing Systems 9, M. Mozer, M. Jordan, and T. Petsche, (Eds), The MIT Press, pp. 1040-1046, 1997.

  38. S. Schaal and C. C. Atkeson, 'Robot Juggling: An Implementation of Memory-Based Learning,” Control Systems Magazine Vol. 14 pp. 57-71, 1994.

    Google Scholar 

  39. J.-J. E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, N.J., 1991.

    Google Scholar 

  40. Y. Uno, M. Kawato, and R. Suzuki, “Formation and Control of Optimal Trajetory in Human Arm Movement-Minimum Torque-Change Model,” Biological Cybernetics Vol. 61 pp. 89-101, 1989.

    Google Scholar 

  41. M. van de Panne and A. Lamouret, Guided Optimization for Balanced Locomotion, in Computer Animation and Simulation '95, D. Terzopoulos and D. Thalmann, (Eds). Eurographics, Springer-Verlag, pp. 165-177. ISBN 3-211-82738-2, 1995.

    Google Scholar 

  42. D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Transactions on Man-Machine Systems Vol. 10(2) pp. 47-53, 1969.

    Google Scholar 

  43. D. E. Whitney, The mathematics of coordinated control of prosthetic arms and manipulators, in Robot Motion: planning and control, M. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Pérez, and M. T. Mason, (Eds), MIT Press, pp. 287-304, 1982.

  44. M. Williamson, Postural Primitives: Interactive Behavior for a Humanoid Robot Arm, in Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. Matarić, J.-A. Meyer, J. Pollack, and S. Wilson, (Eds), The MIT Press, Cape Cod, MA, pp. 124-131, 1996.

    Google Scholar 

  45. M. M. Williamson, Rhythmic robot control using oscillators, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '98). 1998.

  46. A. Witkin and M. Kass, Spacetime Constraints, in Computer Graphics (Proceedings, SIGGRAPH '88), pp. 159-168, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matarić, M.J., Zordan, V.B. & Williamson, M.M. Making Complex Articulated Agents Dance. Autonomous Agents and Multi-Agent Systems 2, 23–43 (1999). https://doi.org/10.1023/A:1010023022632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010023022632

Navigation