Abstract
The errors that arise in a quantum channel can be corrected perfectly if and only if the channel does not decrease the coherent information of the input state. We show that, if the loss of coherent information is small, then approximate quantum error correction is possible.
PACS: 03.67.H, 03.65.U
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
B. Schumacher, Phys. Rev. A 54, 2614 (1996).
B. Schumacher and M. A. Nielsen, Phys. Rev. A 54, 2629 (1996).
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley and Sons, New York, 1991).
H. Barnum and E. Knill, ''Reversing quantum dynamics with near-optimum quantum and classical fidelity,'' preprint quant-ph/0004088.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schumacher, B., Westmoreland, M.D. Approximate Quantum Error Correction. Quantum Information Processing 1, 5–12 (2002). https://doi.org/10.1023/A:1019653202562
Issue Date:
DOI: https://doi.org/10.1023/A:1019653202562