Abstract
This paper deals with the computation of the formally integrable systems underlying a given quasi-linear polynomial DAE. We use as stopping condition the criterium of differential stability, which happens to be equivalent to the formal integrability in dimension 1. A symbolic method is developed to compute effectively a finite collection of so-called triangular stable DAEs, whose solutions are precisely all the solutions of the initial system. Besides, this algorithm enables to determine the generic points of a triangular DAE, by checking the non-nullity of a single polynomial.
Similar content being viewed by others
References
F. Boulier, Etude et implémentation de quelques algorithmes en algèbre différentielle, Ph.D. thesis, Université des Sciences et Technologies de Lille (1994).
F. Boulier, D. Lazard, F. Ollivier and M. Petitot, Representation for the radical of a finitely generated differential ideal, in: Proc. of ISSAC' 95, Montréal, ed. T. Levelt (ACM Press, New York, 1995) pp. 158-166.
T. Becker and V. Weispfenning, Gröbner Bases, a Computational Approach to Commutative Algebra, Graduate Texts in Mathematics 141 (Springer, Berlin, 1993).
S.L. Campbell, The numerical solution of higher index linear time varying singular systems of differential equations, SIAM J. Sci. Statist. Comput. 6 (1988) 334-348.
S.L. Campbell and C.W. Gear, The index of general nonlinear DAEs, J. Numer. Math. 72(2) (1995) 173-196.
C.W. Gear, Differential-algebraic equations index transformations, SIAM J. Sci. Statist. Comput. 9 (1988) 39-47.
H. Goldschmidt, Existence theorems for analytic linear PDEs, Ann. Math. 86 (1962) 246-270.
M. Kuranishi, On E. Cartan's prolongation theorem of exterior differential systems, Amer. J. Math. 79 (1957) 1-47.
D. Lazard, Letter (November 1996).
Y.O. Macutan, Geometry of differential equations and formal integrability theory, Technical Report RT170, LMC-IMAG, Grenoble (1997).
B. Malgrange, Equations de Lie II, J. Differential Geom. 7 (1972) 117-141.
O.-P. Piirilä, J. Tuomela and G. LeVey, Differential-algebraic systems and formal integrability, Research Report A326, Helsinki University of Technology (1993).
M.-P. Quéré and G. Villard, An algorithm for the reduction of linear DAE, in: Proc. of ISSAC' 95, ed. A.H.M. Levelt (ACM Press, New York, 1995) pp. 223-231.
P.J. Rabier, Implicit differential equations near a singular point, J. Math. Anal. Appl. 144 (1988) 425-449.
P.J. Rabier and W.C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations, J. Differential Equations 109 (1994) 110-146.
P.J. Rabier and W.C. Rheinboldt, On impasse points of quasilinear differential-algebraic equations, J. Math. Anal. Appl. 181 2 (1994) 429-454.
S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations, Circuits Systems Signal Process. 10(3) (1991) 343-359.
G.J. Reid, P. Lin and A.D. Wittkopf, Differential elimination-completion algorithms for DAE and PDAE, preprint (1996).
J.F. Ritt, Differential Algebra (Amer. Mathematical Soc., Providence, RI, 1950).
D.C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1965) 1-114.
G. Thomas, Symbolic computation of the differential index of quasi-linear DAEs, in: ACM Proc. of ISSAC' 96, ed. Y. Lakshmann (ETH, Zürich, 1996) pp. 196-203.
G. Thomas, Contributions à l'étude des équations différentielles-algébriques: Approche par le calcul formel, Thèse INP, Grenoble (1997).
J. Tuomela, On singular points of quasilinear differential and differential-algebraic equations, preprint, Institute of Mathematics, Helsinki University of Technology (1996).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Macutan, Y., Thomas, G. Theory of formal integrability and DAEs: effective computations. Numerical Algorithms 19, 147–157 (1998). https://doi.org/10.1023/A:1019162624913
Issue Date:
DOI: https://doi.org/10.1023/A:1019162624913