Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Detection of discontinuities in scattered data approximation

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A Detection Algorithm for the localisation of unknown fault lines of a surface from scattered data is given. The method is based on a local approximation scheme using thin plate splines, and we show that this yields approximation of second order accuracy instead of first order as in the global case. Furthermore, the Detection Algorithm works with triangulation methods, and we show their utility for the approximation of the fault lines. The output of our method provides polygonal curves which can be used for the purpose of constrained surface approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arge and M. Floater, Approximating scattered data with discontinuities, Numerical Algorithms 8 (1994) 149–166.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Bozzini and L. Lenarduzzi, Recovering a function with discontinuities in dimension two, in: Mathematical Methods for Curves and Surfaces, eds. M. Dæhlen, T. Lyche and L.L. Schumaker (Vanderbilt University Press, Nashville, 1995) pp. 41–48.

    Google Scholar 

  3. M. Bozzini and L. Lenarduzzi, Recovering a function with discontinuities from correlated data, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P.J. Laurent (World Scientific, Singapore, 1996) pp. 1–16.

    Google Scholar 

  4. N. Dyn, D. Levin and S. Rippa, Data dependent triangulations for piecewise linear interpolation, IMA J. Numer. Anal. 10 (1990) 137–154.

    MATH  MathSciNet  Google Scholar 

  5. N. Dyn, D. Levin and S. Rippa, Algorithms for the construction of data dependent triangulations, in: Algorithms for Approximation, eds. J.C. Mason and M.G. Cox (Chapman and Hall, London, 1990) pp. 185–192.

    Google Scholar 

  6. N. Dyn, D. Levin and S. Rippa, Boundary correction for piecewise linear interpolation defined over data-dependent triangulations, J. Comput. Appl. Math. 39 (1992) 179–192.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Dyn and S. Rippa, Data-dependent triangulations for scattered data interpolation and finite element approximation, Appl. Numer. Math. 12 (1993) 89–105.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Franke and G. Nielson, Surface approximation with imposed conditions, in: Surfaces in Computer Aided Design, eds. R. Barnhill and W. Boehm (North-Holland, Amsterdam, 1983) pp. 135–146.

  9. N.P. Fremming, Ø. Hjelle and C. Tarrou, Surface modelling from scattered geological data, in: Numerical Methods and Software Tools in Industrial Mathematics, eds. M. Dæhlen and A. Tveito (Birkhauser, Boston, 1997).

    Google Scholar 

  10. C. Lawson, Software for C1 interpolation, in: Mathematical Software, Vol. 3, ed. J. Rice (Academic Press, New York, 1977) pp. 161–194.

    Google Scholar 

  11. C.A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11–22.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.C. Parra, M.C. Lopez de Silanes and J.J Torrens, Vertical fault detection from scattered data, J. Comput. Appl. Math. 73(5) (1996) 225–239.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.J.D. Powell, The theory of radial basis function approximation in 1990, in: Advances in Numerical Analysis, Vol. II, ed. W. Light (Oxford University Press, 1992) pp. 105–210.

  14. M.J.D. Powell, The uniform convergence of thin plate spline interpolation in two dimensions, Numer. Math. 68 (1994) 107–128.

    Article  MATH  MathSciNet  Google Scholar 

  15. F.P. Preparata and M.I. Shamos, Computational Geometry (Springer, New York, 1985).

    Google Scholar 

  16. R. Schaback, Creating surfaces from scattered data using radial basis functions, in: Mathematical Methods for Curves and Surfaces, eds. M. Dæhlen, T. Lyche and L.L. Schumaker (Vanderbilt University Press, Nashville, 1995) pp. 477–496.

    Google Scholar 

  17. R. Schaback, Multivariate interpolation and approximation by translates of a basis function, in: Approximation Theory, Vol. 8, eds. C.K. Chui and L.L. Schumaker (World Scientific, Singapore, 1995) pp. 491–514.

    Google Scholar 

  18. L.L. Schumaker, Triangulation methods, in: Topics in Multivariate Approximation, eds. C.K. Chui, L.L. Schumaker and F.I. Utreras (Academic Press, New York, 1987) pp. 219–232.

    Google Scholar 

  19. L.L. Schumaker, Triangulations in CAGD, IEEE Computer Graphics & Applications (January 1993) 47–52.

  20. J. Springer, Modeling of geological surfaces using finite elements, in: Wavelets, Images, and Surface Fitting, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (1994) pp. 467–474.

  21. G.P. Tolstov, Fourier Series (Dover, New York, 1962).

  22. Z. Wu and R. Schaback, Local error estimates for radial basis function interpolation, IMA J. Numer. Anal. 13 (1993) 13–27.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzmer, T., Iske, A. Detection of discontinuities in scattered data approximation. Numerical Algorithms 16, 155–170 (1997). https://doi.org/10.1023/A:1019139130423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019139130423

Navigation