Abstract
The eigenanalysis of matrices or operators based only on the knowledge of the spectrum may be misleading in the non-normal case. Instead of the spectrum, one may fully characterize the spectral behavior of a non-normal matrix by analyzing its spectral portrait, i.e., the set of its resolvent norm. In this paper, we propose a parallel version of the generalized Davidson method for analyzing and plotting the spectral portrait of large non-normal matrices. We report the performance results obtained on the machine Paragon.
Similar content being viewed by others
References
Z. Bai, R. Barret, D. Day, J. Demmel and J. Dongarra, Test matrix collection (non-Hermitian eigenvalue problems), manuscript (1995).
T. Braconnier and N.J. Higham, Computing the field of values and pseudospectra using the Lanczos method with continuation, BIT 36(3) (1996) 422–440.
J.F. Carpraux, J. Erhel and M. Sadkane, Spectral portrait for non-Hermitian large matrices, Computing 53 (1994) 301–310.
J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker and R.C. Whaley, SCALAPACK: A portable linear algebra library for distributed memory computers - Design issues and performance, Tech. Report CS-95-283, University of Tennessee, Knoxville (March 1995).
M. Crouzeix, B. Philippe and M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15 (1994) 62–76.
E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Comput. Phys. 17 (1975) 87–94.
S.K. Godunov, Spectral portrait of matrices and criteria of spectrum dichotomy, in: 3rd Internat. IMACS-CAMM Symposium on Computer Arithmetic and Enclosure Methods, eds. L. Athanassova and J. Herzberger (Oldenburg/North-Holland, 1991).
G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 1989).
V. Heuveline, Accélération polynômiale pour le problème aux valeurs propres et portraits spectraux de matrices, Ph.D. thesis, IRISA/INRIA, Université de Rennes I (1997).
V. Heuveline and M. Sadkane, Chebyshev acceleration techniques for large complex non-Hermitian eigenvalue problems, Reliable Comput. 2 (1996) 111–118.
V. Heuveline and M. Sadkane, Parallel computation of spectral portrait of large matrices, in: 3rd Internat. Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96), Lyngby, Denmark (August 18-21, 1996). Lecture Notes in Computer Science series, Vol. 1184, eds. J. Dongarra et al. (Springer, Berlin) pp. 398–407.
N.J. Higham, Algorithm 694: A collection of test matrices in Matlab, ACM Trans. Math. Software 17(3) (1991) 289–305.
B. Philippe and M. Sadkane, Computation of the fundamental singular subspace of a large matrix, Linear Algebra Appl. 257 (1997) 77–104.
G.L.G. Sleijpen and H.A. Van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.
K.-C. Toh and L.N. Trefethen, Calculation of pseudospectra by the Arnoldi method, SIAM J. Sci. Comput. 17 (1996) 1–15.
V. Toumazou, Portrait spectraux de matrices: un outil d'analyse de la stabilité, Ph.D. thesis, Universit é H. Poincaré, Nancy (1996).
L.N. Trefethen, Pseudospectra of matrices, in: 14th Dundee Biennal Conference on Numerical Analysis, eds. D.F. Griffiths and G.A. Watson (1991).
L.N. Trefethen, Pseudospectra of linear operators, in: '95: Proceedings of 3rd Internat. Congress on Industrial and Applied Mathematics (Akademie-Verlag, Berlin, 1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Heuveline, V., Philippe, B. & Sadkane, M. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numerical Algorithms 16, 55–75 (1997). https://doi.org/10.1023/A:1019126827697
Issue Date:
DOI: https://doi.org/10.1023/A:1019126827697