Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Parallel computation of spectral portrait of large matrices by Davidson type methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The eigenanalysis of matrices or operators based only on the knowledge of the spectrum may be misleading in the non-normal case. Instead of the spectrum, one may fully characterize the spectral behavior of a non-normal matrix by analyzing its spectral portrait, i.e., the set of its resolvent norm. In this paper, we propose a parallel version of the generalized Davidson method for analyzing and plotting the spectral portrait of large non-normal matrices. We report the performance results obtained on the machine Paragon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bai, R. Barret, D. Day, J. Demmel and J. Dongarra, Test matrix collection (non-Hermitian eigenvalue problems), manuscript (1995).

  2. T. Braconnier and N.J. Higham, Computing the field of values and pseudospectra using the Lanczos method with continuation, BIT 36(3) (1996) 422–440.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.F. Carpraux, J. Erhel and M. Sadkane, Spectral portrait for non-Hermitian large matrices, Computing 53 (1994) 301–310.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker and R.C. Whaley, SCALAPACK: A portable linear algebra library for distributed memory computers - Design issues and performance, Tech. Report CS-95-283, University of Tennessee, Knoxville (March 1995).

    Google Scholar 

  5. M. Crouzeix, B. Philippe and M. Sadkane, The Davidson method, SIAM J. Sci. Comput. 15 (1994) 62–76.

    Article  MATH  MathSciNet  Google Scholar 

  6. E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Comput. Phys. 17 (1975) 87–94.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.K. Godunov, Spectral portrait of matrices and criteria of spectrum dichotomy, in: 3rd Internat. IMACS-CAMM Symposium on Computer Arithmetic and Enclosure Methods, eds. L. Athanassova and J. Herzberger (Oldenburg/North-Holland, 1991).

  8. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  9. V. Heuveline, Accélération polynômiale pour le problème aux valeurs propres et portraits spectraux de matrices, Ph.D. thesis, IRISA/INRIA, Université de Rennes I (1997).

  10. V. Heuveline and M. Sadkane, Chebyshev acceleration techniques for large complex non-Hermitian eigenvalue problems, Reliable Comput. 2 (1996) 111–118.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Heuveline and M. Sadkane, Parallel computation of spectral portrait of large matrices, in: 3rd Internat. Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96), Lyngby, Denmark (August 18-21, 1996). Lecture Notes in Computer Science series, Vol. 1184, eds. J. Dongarra et al. (Springer, Berlin) pp. 398–407.

    Google Scholar 

  12. N.J. Higham, Algorithm 694: A collection of test matrices in Matlab, ACM Trans. Math. Software 17(3) (1991) 289–305.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Philippe and M. Sadkane, Computation of the fundamental singular subspace of a large matrix, Linear Algebra Appl. 257 (1997) 77–104.

    Article  MATH  MathSciNet  Google Scholar 

  14. G.L.G. Sleijpen and H.A. Van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.

    Article  MATH  MathSciNet  Google Scholar 

  15. K.-C. Toh and L.N. Trefethen, Calculation of pseudospectra by the Arnoldi method, SIAM J. Sci. Comput. 17 (1996) 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Toumazou, Portrait spectraux de matrices: un outil d'analyse de la stabilité, Ph.D. thesis, Universit é H. Poincaré, Nancy (1996).

    Google Scholar 

  17. L.N. Trefethen, Pseudospectra of matrices, in: 14th Dundee Biennal Conference on Numerical Analysis, eds. D.F. Griffiths and G.A. Watson (1991).

  18. L.N. Trefethen, Pseudospectra of linear operators, in: '95: Proceedings of 3rd Internat. Congress on Industrial and Applied Mathematics (Akademie-Verlag, Berlin, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuveline, V., Philippe, B. & Sadkane, M. Parallel computation of spectral portrait of large matrices by Davidson type methods. Numerical Algorithms 16, 55–75 (1997). https://doi.org/10.1023/A:1019126827697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019126827697

Navigation