Abstract
Acetobacter xylinum was cultured in Hestrin-Schramm medium (control medium) and Hestrin-Schramm medium containing acetyl glucomannan (mannan medium). Loose bundles of the cellulose microfibrils are formed in the mannan medium in contrast to the normal ribbons being produced in the control medium. Rapid-freeze and substitution method followed by metal-shadowing revealed the droplet-like structures around the microfibril synthesized in the mannan medium. The cellulose synthesized in the mannan medium was stained heavily by the periodic acid-thiocarbohydrazide-silver proteinate (PATAg) method, while the cellulose synthesized in the control medium was not stained. X-ray diffractometry and FT-IR spectroscopy indicated that the addition of mannan induced a change in the crystal structure from the algal-bacterial type to the cotton-ramie type. Thus the presence of acetyl glucomannan in the medium prevents the assembly of cellulose microfibrils and changes the crystal structure of cellulose.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.REFERENCES
Atalla, R. H. and VanderHart, D. L. (1984) Native cellulose: A composite of two distinct crystalline forms. Science 223, 283–285.
Atalla, R. H., Hackney, J. M., Uhlin, I. and Thompson, N. S. (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 15, 109–112.
Benziman, M., Haigler, C. H., Brown, R. M. Jr., White, A. R. and Cooper, K. M. (1980) Cellulose biogenesis: polymerization and crystallization are coupled process in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 77, 6678–6682.
Brown, R. M. Jr., Willison, J. H. M. and Richardson, C. L. (1976) Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process. Proc. Natl. Acad. Sci. USA 73, 4565–4569.
Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in varions mediums. Macromolecules 24, 6816–6822.
Hackney, J. M., Atalla, R. H. and VanderHart, D. L. (1994) Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble β-1,4-linked polysaccharides: 13C-NMR evidence. Int. J. Biol. Macromol. 16, 215–218.
Haigler, C. H. and Benziman, M. (1982) Chapter 14, Biogenesis of cellulose I microfibrils occurs by cell-directed self-assembly in Acetobacter xylinum, in CELLULOSE and Other Natural Polymer Systems (Brown, R. M. Jr. ed.). New York: Plenum Press, pp. 273–297.
Haigler, C. H. and Chanzy, H. (1989) Electron diffraction analysis of altered cellulose: Implications for cellulose biogenesis, in CELLULOSE and WOOD: CHEMISTRY and TECHNOLOGY (Schuerch, C. ed.). New York: John Wiley & Sons, pp. 493–506.
Hayashi, T., Marsden, M. P. F. and Delmer, D. P. (1987) Pea xyloglucan and cellulose V. Xyloglucancellulose interactions in vitro and in vivo. Plant Physiol. 83, 384–389.
Hestrin, S. and Schramm, M. (1954) Synthesis of cellulose by Acetobacter xylinum 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345–352.
Inomata, F., Takabe, K. and Saiki, H. (1992) Cell wall formation of conifer tracheid as revealed by rapid-freeze and substitution method. J. Electron Microsc. 41, 369–374.
Kai, A. and Kitamura, H. (1985) The structure of cellulose produced by Acetobacter xylinum in the presence of a fluorescent brightener. The influence of concentration of a brightener in the medium on the structure of cellulose. Bull. Chem. Soc. Jpn. 58, 2860–2862.
Kai, A., Kido, H. and Ishida, N. (1990) The effect of a direct dye on the formation process of the structure of bacterial cellulose. Chemistry Letters, 949–952.
Kataoka, Y. and Kondo, T. (1996) Changing cellulose crystalline structure in forming wood cell walls. Macromolecules 29, 6356–6358.
Newman, R. H. (1994) Crystalline forms of cellulose in softwoods and hardwoods. J. Wood Chem. Technol. 14, 451–466.
Okuda, K. and Mizuta, S. (1993) Diversity and evolution of putative cellulose-synthesizing enzyme complexes in green plants. Jpn. J. Phycol. 41, 151–173.
Roland, J. C. (1978) Chapter 1.7 Selective staining, in Electron Microscopy and Cytochemistry of Plant Cells (Hall, J. L. ed.). Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 35–52.
Sarko, A. and Muggli, R. (1974) Packing analysis of carbohydrates and polysaccharidses III. Valonia cellulose and cellulose II. Macromolecules 7, 486–494.
Sugiyama, J. and Harada, H. (1986) Ultrastructural localization of crystalline and amorphous materials in the cell walls of Valonia macrophysa. Mokuzai Gakkaishi 32, 770–776.
Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23, 3196–3198.
Sugiyama, J., Persson, J. and Chanzy, H. (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24, 2461–2466.
Sugiyama, J., Vuong, R. and Chanzy, H. (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175.
Thiéry, J. P. (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique, J. Microscopie 6, 987–1018.
Uhlin, K. I., Atalla, R. H. and Thompson, S. (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2, 129–144.
VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solidstate NMR. Macromolecules 17, 1465–1472.
Wada, M., Sugiyama, J. and Okano, T. (1993) Native celluloses on the basis of two crystalline phase (Iα=Iβ) System. J. Appl. Polym. Sci. 49, 1491–1496.
Wada, M., Sugiyama, J. and Okano, T. (1994) The monoclinic phase is dominant in wood cellulose. Mokuzai Gakkaishi 40, 50–56.
Wada, M., Okano, T., Sugiyama, J. and Horii, F. (1995) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2, 223–233.
Watanabe, T. (1989) Structural studies on the covalent bonds between lignin and carbohydrate in lignin-carbohydrate complexes by selective oxidation of the lignin with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Wood Research 76, 59–123.
Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G. and Gidley, M. J. (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. The Plant Journal 8, 491–504.
Willison, J. H. M. and Rowe, A. J. (1980) Chapter 3. Shadowing, in Replica, Shadowing and Freeze-Etching Techniques (Glauert, A. M. ed.). Amsterdam, New York, Oxford: North-Holland Publishing Company, pp. 59–93.
Yamamoto, H., Horii, F. and Odani, H. (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22, 4130–4132.
Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR Analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26, 1313–1317.
Yamamoto, H. and Horii, F. (1994) In situ crystallization of bacterial cellulose. I. Influences of polymeric additives, stirring and temperature on the formation of cellulose Iα and Iβ as revealed by CP/MAS 13C NMR spectroscopy. Cellulose 1, 57–66.
Yamamoto, H., Horii, F. and Hirai, A. (1996) In situ crystallization of bacterial cellulose. II. Influences of different polymeric additives on the formation of cellulose Iα and Iβ at the early stage of incubation. Cellulose 3, 229–242.
Zaar, K. (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J. Cell Biol. 80, 773–777.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tokoh, C., Takabe, K., Fujita, M. et al. Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan. Cellulose 5, 249–261 (1998). https://doi.org/10.1023/A:1009211927183
Issue Date:
DOI: https://doi.org/10.1023/A:1009211927183