Abstract
This paper considers the number of inner iterations required per outeriteration for the algorithm proposed by Conn et al.[9]. We show that asymptotically, under suitable reasonable assumptions, a single inner iteration suffices.
Similar content being viewed by others
References
D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press, London, 1982.
J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM Journal on Numerical Analysis, 25(5):1197–1211, 1988.
J. V. Burke, J. J. Moré, and G. Toraldo. Convergence properties of trust region methods for linear and convex constraints. Mathematical Programming, Series A, 47(3):305–336, 1990.
P. H. Calamai and J. J. Moré. Projected gradient methods for linearly constrained problems. Mathematical Programming, 39:93–116, 1987.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM Journal on Numerical Analysis, 25:433–460, 1988. See also same journal 26:764-767, 1989.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Testing a class of methods for solving minimization problems with simple bounds on the variables. Mathematics of Computation, 50:399–430, 1988.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear Optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. On the number of inner iterations per outer iteration of a globally convergent algorithm for optimization with general nonlinear equality constraints and simple bounds. In D.F Griffiths and G.A. Watson, editors, Proceedings of the 14th Biennal Numerical Analysis Conference Dundee 1991, pages 49–68. Longmans, 1992.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds. Mathematics of Computation, volume 66, pages 261–288, 1997.
J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its application to quasi-Newton methods. Mathematics of Computation, 28(126):549–560, 1974.
J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained Optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, USA, 1983.
A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, New York, 1968. Reprinted as Classics in Applied Mathematics 4, SIAM, 1990.
N. I. M. Gould. On the accurate determination of search directions for simple differentiable penalty functions. IMA Journal of Numerical Analysis, 6:357–372, 1986.
N. I. M. Gould. On the convergence of a sequential penalty function method for constrained minimization. SIAM Journal on Numerical Analysis, 26:107–128, 1989.
J. J. Moré. Trust regions and projected gradients. In M. Iri and K. Yajima, editors, System Modelling and Optimization, volume 113, pages 1–13, Berlin, 1988. Springer Verlag. Lecture Notes in Control and Information Sciences.
Ph. L. Toint. Global convergence of a class of trust region methods for nonconvex minimization in Hilbert space. IMA Journal of Numerical Analysis, 8:231–252, 1988.
M. H. Wright. Interior methods for constrained optimization. volume 1 of Acta Numerica, pages 341–407. Cambridge University Press, New York, 1992.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Conn, A.R., Gould, N. & Toint, P.L. On the Number of Inner Iterations Per Outer Iteration of a Globally Convergent Algorithm for Optimization with General Nonlinear Inequality Constraints and Simple Bounds. Computational Optimization and Applications 7, 41–69 (1997). https://doi.org/10.1023/A:1008667728545
Issue Date:
DOI: https://doi.org/10.1023/A:1008667728545