Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Concurrent, Distributed Architecture for Diagnostic Reasoning

  • Published:
User Modeling and User-Adapted Interaction Aims and scope Submit manuscript

Abstract

This paper demonstrates the feasibility of modeling concurrent diagnostic reasoning (CDR) by means of the computational model of actors. Actors have a value added on top of objects, because they include the properties of abstraction, modularity and reuse of objects but allow really concurrent and distributed architectures, in the sense that memory (the environment) is assumed not to be shared among actors. Whether concurrency really implies efficiency is still debated. We are more concerned here with the actor-based design of the diagnostic reasoning model. As a testimony of the feasibility of our proposal, a concrete, actor-based diagnostic program is presented as a module for an Intelligent Tutoring System in the domain of school algebra. CDR is obtained from the coordinated behaviour of actors which possess limited local knowledge and accomplish the global goal of diagnostic reasoning by interacting with each other. We examine how the ‘traditional’ approaches to student modeling, such as overlay and bug models, can be re-visited in a distributed perspective of computational actors and how the latter view outperforms the previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Hanna, A., R. Benjamings, and W. Jansweijer: 1991, ‘Device understanding and modeling for diagnosis’, IEEE Expert 6, 26-31.

    Google Scholar 

  • Agha, G: 1986, ‘Actors: A Model of Concurrent Computation in Distributed Systems’, MIT Press, Cambridge, MA.

    Google Scholar 

  • Agha, G., C. Houck and R. Panwar: 1992, ‘Distributed Execution of Actor Programs’, Languages and Compilers for Parallel Computing, LNCS 586, pp. 1-17, Springer-Verlag.

  • Anderson, J. R., C. F. Boyle, R. Farell, and B. J. Reiser: 1987, ‘Cognitive principles in the design of computer tutors’, In: P. Morris (ed.): Modelling cognition, pp. 93-113, New-York, J. Wiley Press.

    Google Scholar 

  • Anderson, J. R.,C. F. Boyle, A.T. Corbett, and M.W. Lewis: 1990, ‘Cognitive modeling and intelligent tutoring’, Artificial Intelligence 42, 7-49.

    Google Scholar 

  • Bond, A. H. and L. Gasser: 1988, ‘Readings in Distributed Artificial Intelligence’, San Mateo, CA: Morgman Kaufmann.

    Google Scholar 

  • Briot, J. P. and L. Gasser: 1992, ‘Object-Based Concurrent Computation and DAI’, In: N.M. Avouris and L. Gasser (eds): Distributed Artificial Intelligence: Theory and Praxis, Kluwer Academic Publishers.

  • Brown, J. S. and R. R. Burton: 1978, ‘Diagnostic Models for Procedural Bugs in Basic Mathematical Skills’, Cognitive Science 2, 155-192.

    Google Scholar 

  • Cerri, S. A.: 1994, ‘The Natural Laboratory Methodology Supporting Computer Mediated Generic Dialogues’, In: M. F. Verdejo and S. A. Cerri (eds): Collaboratories Dialogue Technologies in Distance Learning, pp. 181-201, Springer-Verlag.

  • Cerri, S. A.: 1996, Learning computing: understanding objects by understanding variables and functions, The first online hypertext journal on internet concerning object-oriented programming, 1, http://www.sigs.com/objectcurrents/

  • Cerri, S. A., E. Cheli and A. McIntyre: 1992, ‘Nobile: User Model Acquisition in a Natural Laboratory’, In: M. Jones and P. H. Winne (eds): Adaptive Learning Environments, Computer and Systems Sciences, LNCS 85, pp. 325-347, Springer Verlag.

  • Cerri, S.A. and V. Loia: 1996, Knowledge Communication: motivations and foundations, ACM Workshop on Strategic Directions in Computer Research -Working group on Parallel and Distributed Computation, MIT, Cambridge, http://wwwosl.cs.uiuc.edu/sdrc.html

  • Cerri, S.A., P. Landini, and M. Leoncini: 1987, ‘Cooperative agents for knowledge-based information systems’, Applied Artificial Intelligence 1, 1-24.

    Google Scholar 

  • Chandrasekaran, B.: 1988, ‘Generic Tasks as Building Blocks for Knowledge-Based Systems: The diagnosis and Routine Design Examples, Knowledge Engineering Review 3, 183-210.

    Google Scholar 

  • Chan, T-K.: 1991, Integration-Kid: A Learning Companion System, In: Proc. IJCAI’91, pp. 1094- 1099.

  • Cheikes, B. A.: 1995, GIA: An Agent-Based Architecture for Intelligent Tutoring Systems, CIKM'95 Workshop on Intelligent Information Agents, Baltimore, MD.

  • Chittaro, L., G. Guida, C. Tasso, and E. Toppano: 1993, ‘Functional and teleological knowledge in the multimodeling approach for reasoning about physical systems: a case study in diagnosis’, IEEE Transaction System, Man, Cybernetics. 23, 1718-1751.

    Google Scholar 

  • Clancey, W. L.: 1985, ‘Heuristic Classification’, Artificial Intelligence 27, 289-350.

    Google Scholar 

  • Clancey, W. L.: 1992, ‘Representation of Knowing: In Defense of Cognitive Apprenticeship’, Artificial Intelligence in Education 3, 139-168.

    Google Scholar 

  • Cohen, P. R. and H. J. Levesque: 1990, ‘Intentionic Choice with Commitment’, Artificial Intelligence 42, 213-261.

    Google Scholar 

  • Dattolo, A and V. Loia: 1996, Agent-Based Design of Distributed Hypertext, Proc. of the 11 ACM Symposium Applied Computing, Philadelphia, USA, pp. 129-136, ACM Press.

  • Davis, R.: 1993, ‘Retrospective on Diagnostic Reasoning based on Structure and Behavior’, Artificial Intelligence 59, 149-157.

    Google Scholar 

  • Du Boulay, B. and P. Goodyear: 1992, ‘Student-System Interactions’, In: M. Jones and P. H. Winne (eds): Adaptive Learning Environments, Computer and Systems Sciences, LNCS 85, pp. 319-324, Springer Verlag.

  • Eliot, C. and B. Woolf: 1995, ‘An Adaptive Student Centered Curriculum for an Intelligent Training Systems’, User-Modeling and User-Adapted Interaction 5, 67-89.

    Google Scholar 

  • Fabiano, A. S. and S. A. Cerri: 1996, ‘Concurrent, asynchronous search for the availability of knowledge’, Applied Artificial Intelligence 10, 145-161.

    Google Scholar 

  • Feldman, J. A.: 1979, ‘High Level Programming for Distributed Computing’, Communication of ACM 6, 353-368.

    Google Scholar 

  • Fennel, R. D. and V. Lesser: 1977, ‘Parallelism in Artificial Intelligence Problem Solving: A Case Study of Hearsay II,’ IEEE Transaction on Computers 26, 98-111.

    Google Scholar 

  • Finin, T., J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J. McGuire, R. Pelavin, S. Shapiro, and C. Ceck: 1992, Specification of the KQLM Agent-Communication Language, EIT TR #92-04, Enterprise Integration Technologies, Palo Alto, CA, USA.

    Google Scholar 

  • Futtersack, M.: 1992, QUIZ: Une Architecture Multi-Agent pour un Tuteur Intelligent, Thése de Doctorat, Université Paris VI, France.

    Google Scholar 

  • Gisolfi, A. and V. Loia: 1994, ‘Designing Complex Systems in Distributed Architectures: an ITS Perspective’, Applied Artificial Intelligence 8, 393-411.

    Google Scholar 

  • Gisolfi, A. and V. Loia: 1995, ‘A Complete, Flexible Fuzzy-based Approach to the Classification Problem’, Approximate Reasoning 13, 151-183.

    Google Scholar 

  • Guin, D.: 1994, ‘Toward Models of Interaction Between an Artificial Agent and a Human One’, in Verdejo, M. F. and S. A. Cerri (eds) Collaborative Dialogue Technologies in Distance Learning, Computer and Systems Sciences, LNCS 133, pp. 170-180, Springer Verlag.

  • Hamscher, W. C.: 1991, ‘Modeling digital circuits for troubleshooting’, Artificial Intelligence 51, 223-271.

    Google Scholar 

  • Hansen, B. P.: 1975, ‘The Programming Language Concurrent Pascal’, IEEE Transaction Software Engineering 2, 199-207.

    Google Scholar 

  • Hansen, B. P.: 1978 ‘Distributed Processes: A Concurrent Programming Concept’, Communication of ACM 11, 934-941.

    Google Scholar 

  • Hewitt, C. E.: 1977, ‘Viewing Control Structures as Patterns of Passing Messages’, Artificial Intelligence 8, 323-364.

    Google Scholar 

  • Hewitt, C. E.: 1991, ‘Open Information Systems Semantics for Distributed Artificial Intelligence’, Artificial Intelligence 47, 79-106.

    Google Scholar 

  • Hoare, C. A. R.: 1978 ‘Communicating Sequential Processes’, Communications of the ACM 8, 666-677.

    Google Scholar 

  • Horn, W.: 1991, ‘The challenge of deep models, inference structures, and abstract types’, Applied Artificial Intelligence 5, 87-96.

    Google Scholar 

  • Kim, K. and G. Agha: 1992, ‘Compilation of Highly Parallel Actor-Based Languages’, Proc. Fifth Workshop on Languages and Compilers for Parallel Computing, pp. 1-12, New Haven, CT.

    Google Scholar 

  • Labat, J. M.: 1992, ‘QUIZ: Une contributionà l'amélioration des capacités pédagogiques des tuteurs intelligents’, Thése de Doctorat, Université Paris VI, 1992.

  • Lenat, D.: 1975, BEINGs: Knowledge as Interacting Experts, Proc. of the 1975 IJCAI, pp. 126-133.

  • Lesser, V. R. and L. D. Erman: 1980, ‘Distributed Interpretation: a Model and Experiment’, IEEE Transaction on Computers 29, 1144-1163.

    Google Scholar 

  • Long, W. J.: 1989 ‘Medical diagnosis using a probabilistic causal network’, Applied Artificial Intelligence 3, 367-384.

    Google Scholar 

  • Matz, M.: 1982, ‘Towards a process model for high school algebra errors’, In: D. H. Sleeman and J. S. Brown (eds): Intelligent Tutoring Systems, pp. 22-50, London: Academic Press.

    Google Scholar 

  • McCalla, G. and J. Greer (eds): 1992, ‘Special Issue on Student Modeling’, Journal of Artificial Intelligence in Eduction 4.

  • McCarty, J.: 1968, ‘Programs with common sense’, In: M. Minsky (ed.): Semantic Information Processing, MIT Press, Cambridge, MA.

    Google Scholar 

  • McDermott, J.: 1988, ‘A Taxonomy of Problem-Solving Methods’, In: S. Marcus (ed.): Automating Knowledge Acquisition of Expert Systems, Boston, Kluwer.

    Google Scholar 

  • Minsky, M.: 1979,’ The Society Theory of Thinking’, In: Artificial Intelligence; a MIT Perspective, 423-450, MIT Press, Cambridge, MA.

    Google Scholar 

  • Nicaud, J. F.: 1994, ‘A General Model of Algebraic Problem Solving for the Design of Interactive Learning Environments, In: J. P. Ponte et al. (eds): Mathematical Problem Solving and New Information Technologies, Computer and Systems Sciences Vol. 89, Springer Verlag.

  • Ohlsson, S.: 1987, ‘Some Principles of Intelligent Tutoring’, In: R.W. Lawler and M. Yazdani (eds): Artificial Intelligence in Education, Vol. 1, pp. 203-237.

  • Ohlsson, S. and P. Langley: 1988, ‘Psychological Evaluation of Path Hypotheses in Cognitive Diagnosis’, In: H. Handl and A. Lesgold (eds): Learning Issues for Intelligent Tutoring Systems, pp. 42-62, New York: Springer-Verlag.

    Google Scholar 

  • Oren, T., G. Salomon, K. Kreitman, and A. Don: 1990, ‘Guides: Characterizing the interface’, In: B. Laurel (ed.): The art of human-computer interface design, Reading, MA, Addison-Wesley.

    Google Scholar 

  • Pyle, I.C.: 1981, ‘The Ada Programming Language’, Prentice-Hall International, NJ.

    Google Scholar 

  • Reimann, R.: 1990, ‘Towards general knowledge-diagnosis systems for student-and user-modelling’, Learning and Instruction, European Research in an International Context, Vol. 2.1, In: H. Handl, E. De Corte, S. N. Bennet and H. F. Friedrich (eds): Social and Cognitive Aspects of Learning and Instruction, Pergamon Press.

  • Rich, C. and R. C. Waters: 1990, The programmer's apprentice, New York, ACM Press.

    Google Scholar 

  • Riel, M.: 1990, ‘Cooperative learning across classrooms in eletronic learning circles’, Instructional Science 19, 445-466.

    Google Scholar 

  • Self, J.: 1990, ‘Bypassing the intractable problem of student modeling’, In: C. Frasson and G. Gauthier (eds): Intelligent Tutoring Systems, pp. 107-123, Norwood N.J., Aplex Press.

    Google Scholar 

  • Self, J.: 1993, ‘Model-based cognitive diagnosis, User Modeling and User Adapted Interaction 3, 89-106.

    Google Scholar 

  • Shortliffe, E. H., L. E. Perreault, G. Wiederhold and L. M. Fagan: 1990, Medical Informatics: Computer Applications in Health Care, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Silbershatz, A.: 1984, ‘Cell: A Distributed Computing Modularization Concept’, IEEE Transaction Software Engineering 2, 178-185.

    Google Scholar 

  • Sleeman, D: 1982, ‘Assessing aspects of competence in basic algebra’, In: D. Sleeman and J. S. Brown (eds): Intelligent Tutoring Systems, 185-199.

  • Sleeman, D. and J. S. Brown: 1982, Intelligent Tutoring Systems, New York, Academic Press.

    Google Scholar 

  • Steels, L.: 1988, ‘The deepening of Expert Systems’, In: R. Vichnevetsky et al. (eds): Proc. of the 12th IMACS World Congress, Paris, France, Vol. 4, pp. 323-326.

  • Stein, L. A., H. Lieberman, and D. A. Ungar: 1989, ‘A shared view of sharing: the Threaty of Orlando’, In: W. Kim and F. Lochovsky (eds): Object-Oriented Concepts, Application and Database, Addison-Wesley, Readings, MA.

    Google Scholar 

  • Taura, K. and A. Yonezawa: 1995, Schematic: A Concurrent Object-Oriented Extension to Scheme, Technical Report, University of Tokyo, http://web.yl.is.s.u-tokyo.ac.jp/pl/schematic.html

  • UMUAI: 1995, ‘Special Issues on Student Modeling’, User Modeling and User-Adapted Interaction 4(4)-5(2).

  • Van Lehn, K.: 1988, ‘Student Modeling’, In: M. Polson and J. Richardson (eds): Foundations of Intelligent Tutoring System, Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Vargas, J. and C. J. Kee: 1994, ‘Improving the scope of intelligent tutoring by adapting a case-based methodology through a distributed architecture’, Applied Artificial Intelligence 8, 413-424.

    Google Scholar 

  • Vasandani, V. and T. Govindaraj: 1995, ‘Knowledge Organization in Intelligent Tutoring Systems for Diagnostic Problem Solving in Complex Dynamic Domains’, IEEE Transaction on Systems, Man, and Cybernetics 25, 1076-1096.

    Google Scholar 

  • Wenger, E.: 1987, Artificial Intelligence and Tutoring Systems, Morgan Kaufmann Publishers.

  • Yonezawa, A.: 1990, ABCL: an Object-Oriented Concurrent System, MIT Press.

  • Yonezawa, A. and M. Tokoro (eds): 1987, Object Oriented Concurrent Programming, MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerri, S.a., Loia, V. A Concurrent, Distributed Architecture for Diagnostic Reasoning. User Modeling and User-Adapted Interaction 7, 69–105 (1997). https://doi.org/10.1023/A:1008263915043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008263915043

Navigation