Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Point Light Source Estimation from Two Images and Its Limits

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, the performance of parameter estimation of a single static distant point light source from two video images is analyzed in terms of estimation theory. The illumination parameters are the intensity and direction of the light source.

In the first part of this paper, estimators from the literature are reviewed. Most recent estimators evaluate as input data two video images as well as the 3D shape and the 3D motion of the visible moving objects.

In the second part of the paper, the performance of these recent methods is analyzed. The input data to estimation as well as the inherent input data errors are described by a stochastic observation model. Based on this model, the performance is analyzed regarding the Cramér-Rao theoretical lower bound of estimation error variances. The bound is derived for a variety of cases of scene illumination, object motion and errors in input data. For simplification purpose, the bound is valid only for object motions with the rotation axis lying in the image plane. The analysis shows in which cases which estimation accuracy can be expected with current methods.

Finally, a comparison of the bound with one of the recent estimators shows that recent estimators are suboptimal in case of errors in the 3D shape of the objects. In future work, the stochastic observation model presented in this paper can be used to improve illumination estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Arnspang, J. 1991. On the use of time varying shading and surface rim radiance. Pattern Recognition Letters, 12(4):203–210.

    Google Scholar 

  • Becker, S. and Bove, V.M. 1994. Formulating a scene probability equation to differentiate the effects of shape and albedo on image brightness. TVOT Technical Report, MIT Media Laboratory, ftp://ftp.media.mit.edu/pub/Scene Prob Equation. ps.Z.

  • Bejanin, M., Huertas, A., Mediani, G., and Nevatia, R. 1994. Model validation for change detection. In 2nd Int'l IEEE Workshop on Applications of Computer Vision, Los Alamitos, USA, pp. 160–167.

  • Blohm, W. 1997. Lightness determination at curved surfaces with applications to dynamic range compression and model-based coding of facial images. IEEE Trans. on Image Processing, 6(8):1129–1138.

    Google Scholar 

  • Blondé, L., Buck, M., Galli, R., Niem, W., Paker, Y. Schmidt, W., and Thomas, G. 1996. A virtual studio for live broadcasting: The MONA LISA project. IEEE Multi Media, 3(2).

  • Bronstein, I.N. and Semendjajew, K.A. 1996. Teubner-Taschenbuch der Mathematik, Teubner, Leipzig.

  • Brunelli, R. 1997. Estimation of pose and illuminant direction for face processing. Image and Vision Computing, 15:741–748.

    Google Scholar 

  • Chojnacki, W. and Brooks, M.J. 1994. Revisiting Pentland's estimator of light source direction. Journal of the Optical Society of America, Series A, 11(1):118.

    Google Scholar 

  • Daimler-Benz AG: 1992. Some results on modeling illumination effects in a videophone sequence. COST 211ter Simulation Subgroup, Turin, 30. September-1. October.

  • Deshpande, S.G. 1996. Ontracking illuminant motion. Diploma Thesis, Indian Institute of Technology, Bombay, India.

    Google Scholar 

  • Deshpande, S.G. and Chaudhuri, S. 1996. Recursive estimation of illuminant motion from flow field. In '96, Intl. Conference on Image Processing, Lausanne, Schwitzerland.

  • Deshpande, S.G. and Chaudhuri, S. 1998. Recursive estimation of illuminant motion from flow field and simultaneous recovery of shape. Computer Vision and Image Understanding, 72(1):10–20.

    Google Scholar 

  • Drew, M.S. and Funt, B.V. 1990. Calculating surface reflectance using a single-bounce model of mutual reflection. In IEEE Conf. on Computer Vision, pp. 394–399.

  • Eisert, P. and Girod, B. 1996. Illumination compensated motion estimation for analysis synthesis coding. In B. Girod, H. Niemann, and H.-P. Seidel. 3D Image Analysis and Synthesis’ 96, Proceedings, 18-19. November Erlangen, Germany, pp. 61–66.

  • Forsyth, D. and Zissermann, A. 1989. Shape from shading in the light of mutual illumination. In Alvey Vision Conference, pp. 193–198.

  • Gilge, M. 1990. Motion estimation by scene adaptive block matching and illumination correction. Image Processing Algorithms and Techniques, SPIE Vol. 1224, pp. 355–366.

    Google Scholar 

  • Grimsehl, E. 1988. Lehrbuch der Physik, Vol. 3: Optik. Teubner: Leipzig, Germany.

    Google Scholar 

  • Hampson, F.J., Franich, R.E.H., Pesquet, J.C., and Biemond, J. 1996. Pel-recursive motion estimation in the presence of illumination variations. In Int'l Conf. of Image Processing, Lausanne, Switzerland, Vol. 1. pp. 101–104.

    Google Scholar 

  • Haralick, R.M. and Shapiro, L.G. 1993. Computer and Robot Vision, Vol. II. Addison-Wesley.

  • Hashimoto, T., Kato, H., Sato, K., and Inokuchi, S. 1992. Recognition of material types and interreflection using color images. Systems and Computers in Japan, 23(12):1–12.

    Google Scholar 

  • Ikeuchi, K., et al. 1999. Photometric modelling for mixed reality. In Mixed Reality, Merging Real and Virtual Worlds, Y. Otha and H. Tamura (Eds.). Springer Verlag: Berlin. ISBN 3-540-65623-5.

    Google Scholar 

  • Irani, M., Rousso, B., and Peleg, A. 1994. Computing occluding and transparent motions. Int'l Journal of Computer Vision, 12(1):5–16.

    Google Scholar 

  • Iwahori, Y., Sugie, H., and Ishii, N. 1991. Photometric stereo under illumination from unknown zenith angles. Systems and Computers in Japan, 22(12):99–108.

    Google Scholar 

  • Kanatani, K. 1996. Statistical Optimization for Geometric Computation. Elsevier Science: Amstersam, The Netherlands. ISBN 0-444-82427-8.

    Google Scholar 

  • Klinker, G.J., Shafer, S.A., and Kanade, T. 1988. The measurement of highlights in color images. International Journal of Computer Vision, 2(7):7–32.

    Google Scholar 

  • Klinker, G.J., Shafer, S.A., and Kanade, T. 1990. A Physical approach to color image understanding. International Journal of Computer Vision, 4(7):7–38.

    Google Scholar 

  • Koch, R. 1993. Dynamic 3-D scene analysis through synthesis feedback control. IEEE Transactions on Pattern Recognition, 16(6):556–568.

    Google Scholar 

  • Koller, D., Danilidis, K., and Nagel, H.-H. 1993. Model-Based object tracking in monocular image sequences of road traffic scenes. Int'l Journal of Computer Vision, 10(3):257–281.

    Google Scholar 

  • Lambert, J.H. 1892. Lambert's Photometrie (Photometria sive de mensura de gratibus luminis, colorum et umbrae). Wilhelm Engelmann: Leipzig.

    Google Scholar 

  • Langer, M.S. and Zucker, S.W. 1994. Shape from shading on a cloudy day. Journal of the Optical Society of America, 11(2):467–478.

    Google Scholar 

  • Lee, K.M. and Kuo, C.-C.J. 1994. Shape from shading with perspective projection. CVGIP: Image Understanding, 59(2):202–212.

    Google Scholar 

  • Lee, K.Y. and Pearson, D.E. 1991. Luminance compensation in model-based-prediction. In Picture Coding Symposium, Tokyo, Japan, pp. 275–276.

  • Lee, C.H. and Rosenfeld, A. 1989. Improved methods of estimating shape from shading using the light coordinate system. In Shape from Shading, B.K.P. Horn and M.J. Brooks (Eds.). MIT Press: Cambridge, pp. 323–347.

    Google Scholar 

  • Manabe, Sato, K., and Inokuchi, S. 1995. Detecting interreflection by using moving light. Trans. Inst. Electron. Inf. Commun. Eng. D-II, J78D-II(1):86–93.

    Google Scholar 

  • Melsa, J.L. and Cohn, D.L. 1978. Decision and Estimation Theory, international student ed. McGraw-Hill: Tokyo.

    Google Scholar 

  • Mendel, J.M. 1995. Lessons in Estimation Theory for Signal Processing, Communications and Control. Prentice Hall: Englewood Cliffs, New Jersey.

    Google Scholar 

  • Meyberg, K. and Vachenhauer, P. 1993. Höhere Mathematik, Vol. 1. Springer: Berlin.

    Google Scholar 

  • Moloney, C.R. and Dubois, E. 1991. Estimation of motion fields from image sequences with illumination variation. In ICASSP, Toronto, Canada, Vol. 4, pp. 2425–2428.

    Google Scholar 

  • Mukawa, N. 1992a. Motion field estimation based on shading models. Systems and Computers in Japan, 23(12):66–74.

    Google Scholar 

  • Mukawa, N. 1992b. Estimation of light source information from image sequence. Systems and Computers in Japan, 23(10):92–99.

    Google Scholar 

  • Murase, H. 1991. Surface shape reconstruction of un undulating transparent object. In IEEE Int'l Conf. on Computer Vision and Pattern Recognition, pp. 313–317.

  • Murase, H. and Nayar, S.K. 1994. Illumination planning for object recognition using parametric eigenspaces. IEEE Trans. on Pattern Recognition and Machine Intelligence, 16(12):1219–1227.

    Google Scholar 

  • Musmann, H.G., Hötter, M., and Ostermann, J. 1989. Object-oriented analysis-synthesis coding of moving images. Signal Processing: Image Communication, 1(2):117–137.

    Google Scholar 

  • Nayar, S.K. and Bolle, R.M. 1996. Reflectance based object recognition. Int'l Journal of Computer Vision, 17(3):219–239.

    Google Scholar 

  • Nayar, S.K., Ikeuchi, K., and Kanade, T. 1991. Surface reflection: Physical and geometrical perspectives. IEEE Transactions on Pattern Recognition and Machine Intelligence, 13(7):611–634.

    Google Scholar 

  • Negahdaripour, S. and Yu, C.-H. 1993. A generalized brightness change model for computing optical flow. In Int'l Conf. on Computer Vision, Berlin, pp. 2–11.

  • Nicolas, H. and Labit, C. 1995. Motion and illumination variation estimation using a hierarchy of models: Application to image sequence coding. Journal of Visual Communication and Image Representation, 6(4):303–316.

    Google Scholar 

  • Nicolas, H. and Motsch, J. 1997. Very low bitrate coding using hybrid synthetic/real images for multi-sites videoconference applications. In Proc. of Visual Communication and Image Processing Conference, San Jose, USA. SPIE Vol. 3024, pp. 1330–1341.

    Google Scholar 

  • Nomura, A., Miike, H., and Koga, K. 1995. Determining motion fields under non-uniform illumination. Pattern Recognition Letters, 16(3):286–296.

    Google Scholar 

  • Ono, E., Morishima, S., and Harashima, H. 1993. A model based shade estimation and reproduction schemes for rotational face. In Picture Coding Symposium, Lausanne, Switzerland, pp. 2.2.1–2.2.4.

  • Oppenheim, A.V. and Schafer, R.W. 1998. Discrete Time Signal Processing. Prentice-Hall.

  • Oren, M. and Nayar, S.K. 1995. Generalization of the Lambertian model and implications for machine vision. Int'l Journal of Computer Vision, 14(3):227–251.

    Google Scholar 

  • Ostermann, J. 1994. Object-based analysis-synthesis coding (OBASC) based on the source model of moving rigid 3D objects. Signal Processing: Image Communication, 6(2):143–161.

    Google Scholar 

  • Papoulis, A. 1991. Probability, Random Variables, and Stochastic Processes. McGraw-Hill.

  • Pearson, D.E. 1990. Texture mapping in model-based image coding. Signal Processing: Image Communication, 2(4):377–395.

    Google Scholar 

  • Pentland, A.P. 1982. Finding the illumination direction. Journal of the Optical Society of America, 72(4):448–455.

    Google Scholar 

  • Pentland, A.P. 1990. Linear shape from shading. Int'l Journal of Computer Vision, 4(2):153–162.

    Google Scholar 

  • Pentland, A.P. 1991. Photometric motion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(9):879–890.

    Google Scholar 

  • Phillips, P.J. and Vardi, Y. 1996. Efficient illumination normalization of facial images. Pattern Recognition Letters, 17(8):921–927.

    Google Scholar 

  • Phong, B.-T. 1975. Illumination for computer generated pictures. Communications of the ACM, 18(6):311–317.

    Google Scholar 

  • Pochec, P. and Wasson, W.D. 1991. On surface orientation detection in 3-D. Pattern Recognition Letters, 12(6):363–369.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1992. Numerical Recipes in C. Cambridge University Press: Cambridge, USA.

    Google Scholar 

  • Rashid, H.U. and Burger, P. 1992. Differential algorithm for the determination of shape from shading using a point light source. Image and Vision Computing, 10(2):119–127.

    Google Scholar 

  • Scales, L.E. 1985. Introduction to Non-Linear Optimization. MacMillan: London.

    Google Scholar 

  • Shafer, S.A. 1985. Shadows and Silhouettes in Computer Vision. Kluwer Academic Publishers: Dordrecht, Netherlands.

    Google Scholar 

  • Sorenson, H.W. 1980. Parameter Estimation: Principles and Problems. Marcel Dekker: New York.

    Google Scholar 

  • Stauder, J. 1995. Estimation of point light source parameters for object-based coding. Signal Processing: Image Communication, 7(4-6):355–379.

    Google Scholar 

  • Stauder, J. 1999. Augmented reality with automatic illumination control incorporating ellipsoidal models. IEEE Trans. on Multi Media, 1(2):136–143.

    Google Scholar 

  • Stauder, J. 1998. Illumination analysis for synthetic/natural hybrid image sequence generation. Int'l Conf. of Computer Graphics, Hannover, pp. 506–511.

  • Stauder, J. 1999. Schätzung der Szenenbeleuchtung aus Bewegtbildfolgen. Ph.D. Thesis, University of Hannover, Germany. Fortschritt-Berichte VDI, Series 10, No. 584. ISBN 3-18-358410-7.

    Google Scholar 

  • Stewart, J. and Langer, M.S. 1997. Towards accurate recovery of shape from shading under diffuse lighting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(9):1020–1025.

    Google Scholar 

  • Torrance, K.E. and Sparrow, E.M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America, 57(9):1105–1114.

    Google Scholar 

  • Treves, P. and Konrad, J. 1994. Motion estimation and compensation under varying illumination. In IEEE International Conf. on Image Processing IPIC, Austin, Texas, USA, pp. 373–377.

  • Voinov, V.G. and Nikulin, M.S. 1989. Unbiased Estimators and their Applications. Kluwer Academic Publishers: Dordrecht, Netherlands.

    Google Scholar 

  • Wang, K. and Kohno, R. 1996. Compression coding using an optical model for a pair of range and grey-scale images of 3D objects. IEICE Trans. on. Fundamentals, E79-A(9):1330–1337.

    Google Scholar 

  • Watt, A. 1993. 3D Computer Graphics, 2nd ed. Addison-Wesley.

  • Wei, J. and Li, Z.-N. 1997. Motion compensation in color video with illumination variations. In Int'l Conf. on Image Processing (ICIP), Santa Barbara, USA, pp. 614–617.

  • Weng, J., Ahuja, N., and Huang, T.S. 1993. Optimal motion and structure estimation. IEEE Trans. on Pattern Recognition and Machine Intelligence, 15(9):864–884.

    Google Scholar 

  • Wolff, L.B. and Boult, T.E. 1991. Constraint object features using a polarization reflectance model. IEEE Trans. on Pattern Recognition and Machine Intelligence, 13(7):635–657.

    Google Scholar 

  • Wolff, L.B., Nayar, S.K., and Oren, M. 1988. Improved diffuse reflection models for computer vision. Int'l Journal of Computer Vision, 30(1):55–71.

    Google Scholar 

  • Woodham, R.J. 1980. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1):139–144.

    Google Scholar 

  • Yang, Y. and Yuille, A. 1990. Sources from shading. In Int'l Conf. on Computer Vision, pp. 534–539.

  • Yi, S., Haralick, R.M., and Shapiro, L.G. 1995. Optimal sensor and light source positioning for machine vision. Computer Vision and Image Understanding (CVGIP), 61(1):122–137.

    Google Scholar 

  • Young, G.-S. and Chellappa, R. 1992. Statistical analysis of inherent ambiguities in recovering 3-D motion from a noisy flow field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(10):995–1013.

    Google Scholar 

  • Yu, Y. and Malik, J. 1998. Recovering photometric properties of architectural scenes from photographs. In SIGGRAPH'98 Conference Proceedings. Addison Wesley, pp. 207–218.

  • Zhang, R., Tsai, P.-S., and Shah, M. 1996. Photomotion. Computer Vision and Image Understanding, 63(2):221–231.

    Google Scholar 

  • Zheng, Q. and Chellappa, R. 1991. Estimation of illuminant direction, albedo, and shape from shading. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(7):680–702.

    Google Scholar 

  • Zheng, Q. and Chellappa, R. 1993. A computational vision approach to image registration. IEEE Trans. on Image Processing, 2(3):311–326.

    Google Scholar 

  • Zheng, J.Y., Fukagawa, Y., and Abe, N. 1997. 3D surface estimation and model construction from specular motion in image sequences. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(5):513–520.

    Google Scholar 

  • Zheng, J.Y., Kakinoki, H., Tanaka, K., and Abe, N. 1996. Computing 3D models of rotating objects from moving shading. In Int'l Conf. on Pattern Recognition ICPR'96, Wien, pp. 800–804.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauder, J. Point Light Source Estimation from Two Images and Its Limits. International Journal of Computer Vision 36, 195–220 (2000). https://doi.org/10.1023/A:1008177019313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008177019313

Navigation