Abstract
Finding an accurate method for estimating the affinity of protein ligands activity is the most challenging task in computer-aided molecular design. In this study we investigate and compare seven different prediction methods for a set of 30 glycogen phosphorylase (GP) inhibitors with known crystal structures. Five of the methods involve quantitative structure-activity relationships (QSAR) based on the 2D or 3D structures of the GP ligands alone. They are hologram QSAR (HQSAR), receptor surface model (RSM), comparative molecular field analysis (CoMFA), and applications of genetic neural network to similarity matrix (SM/GNN) or conventional descriptors (C2GNN). All five QSAR-based models have good predictivity and yield q2 values ranging from 0.60 to 0.82. The other two methods, LUDI and a structure-based binding energy predictor (SBEP) system, make use of the structures of the ligand-receptor complexes. The weak correlation between biological activities and the LUDI scores of this set of inhibitors suggests that the LUDI scoring function, by itself, may not be a general method for reliable ranking of a congeneric series of compounds. The SBEP system is derived from a set of physical properties that characterizes ligand-receptor interactions. The final neural network model, which yields a q2 value of 0.60, employs four descriptors. A jury method that combines the predictions of the five QSAR-based models leads to an increase in predictivity. A multi-layer scoring system that utilizes all seven prediction methods is proposed for the evaluation of novel GP ligands.
Similar content being viewed by others
References
Tokarski, J.S. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 37 (1997) 792.
Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons, Inc., New York, NY, 1979.
Randic, M., J. Am. Chem. Soc., 97 (1975) 6609.
Hall, L.H. and Kier, L.B., J. Chem. Inf. Comput. Sci., 35 (1995) 1039.
Hurst, T. and Heritage, T., Abstract of Papers of the Am. Chem. Soc., 213 (1997) 19.
Hurst, T., Heritage, T.W. and Clark, R.D., Abstract of Papers of the Am. Chem. Soc., 215 (1998) 38.
Tong, W.D., Perkins, R., Sheehan, D.M., Welsh, W.J., Lowis, D.R. and Goddette, D.W., Abstract of Papers of the Am. Chem. Soc., 214 (1997) 81.
HQSAR, Version 1.0, Tripos, Inc., St. Louis, MO.
Winkler, D.A. and Burden, F.R., Quant. Struct.-Act. Relat., 17 (1998) 224.
Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.
Goodford, P.J., J. Med. Chem., 28 (1985) 849.
Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.
Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.
Good, A.C., Peterson, S.J. and Richards, W.G., J.Med. Chem., 36 (1993) 2929.
So, S.-S. and Karplus, M., J. Med. Chem., 39 (1996) 1521.
So, S.-S. and Karplus, M., J. Med. Chem., 39 (1996) 5246.
So, S.-S. and Karplus, M., J. Med. Chem., 40 (1997) 4347.
So, S.-S. and Karplus, M., J. Med. Chem., 40 (1997) 4360.
Hahn, M., J. Med. Chem., 38 (1995) 2080.
Hahn, M. and Rogers, D., J. Med. Chem., 38 (1995) 2091.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.
DeWitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.
DeWitte, R.S., Ishchenko, A.V. and Shakhnovich, E.I., J. Am. Chem. Soc., 119 (1997) 4608.
Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.
Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M., Vacca, J.P., Dorsey, B.D., Levin, R.B., Thompson, W.J., Chen, L.J. and deSolms, S.J., J. Med. Chem., 38 (1995) 305.
Åqvist, J., Medina, C. and Samuelsson, J.E., Protein Eng., 7 (1994) 385.
Ajay and Murcko, M.A., J. Med. Chem., 38 (1995) 4953.
Gilson, M.K., Given, J.A., Bush, B.L. and McCammon, J.A., Biophys. J., 72 (1997) 1047.
Martin, J.L., Johnson, L.N. and Withers, S.G., Biochemistry, 29 (1990) 10745.
Martin, J.L., Veluraja, K., Ross, K., Johnson, L.N., Fleet, G.W., Ramsden, N.G., Bruce, I., Orchard, M.G., Oikonomakos, N.G. and Papageorgiou, A.C., Biochemistry, 30 (1991) 10101.
Johnson, L.N., Snape, P., Martin, J.L., Acharya, K.R., Barford, D. and Oikonomakos, N.G., J. Mol. Biol., 232 (1993) 253.
Oikonomakos, N.G., Kontou, M., Zographos, S.E., Tsitoura, H.S., Johnson, L.N., Watson, K.A., Mitchell, E.P., Fleet, G.W., Son, J.C., Bichard, C.J., Leonidas, D.D. and Acharya, K.R., Eur. J. Drug Metab. Pharmacokinet., 19 (1994) 185.
Watson, K.A., Mitchell, E.P., Johnson, L.N., Son, J.C., Bichard, C.J., Orchard, M.G., Fleet, G.W., Oikonomakos, N.G., Leonidas, D.D. and Kontou, M., Biochemistry, 33 (1994) 5745.
Oikonomakos, N.G., Kontou, M., Zographos, S.E., Watson, K.A., Johnson, L.N., Bichard, C.J., Fleet, G.W. and Acharya, K.R., Protein Sci., 4 (1995) 2469.
Oikonomakos, N.G., Zographos, S.E., Johnson, L.N., Papageorgiou, A.C. and Acharya, K.R., J. Mol. Biol., 254 (1995) 900.
Watson, K.A., Mitchell, E.P., Johnson, L.N., Cruciani, G., Son, J.C., Bichard, C.J.F., Fleet, G.W.J., Oikonomakos, N.G., Kontou, M. and Zographos, S.E., Acta Crystallogr., D51 (1995) 458.
Bichard, C.J.F., Mitchell, E.P., Wormald, M.R., Watson, K.A., Johnson, L.N., Zographos, S.E., Koutra, D.D., Oikonomakos, N.G. and Fleet, G.W.J., Tetrahedron Lett., 36 (1995) 2145.
Krülle, T.M., Watson, K.A., Gregoriou, M., Johnson, L.N., Crook, S., Watkin, D.J., Griffiths, R.C., Nash, R.J., Tsitsanou, K.E., Zographos, S.E., Oikonomakos, N.G. and Fleet, G.W.J., Tetrahedron Lett., 36 (1995) 8281.
Hahn, M., J. Chem. Inf. Comput. Sci., 37 (1997) 80.
Rogers, D.R. and Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 34 (1994) 854.
Dean, P.M., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, p. 150.
Richards, W.G., In Pullman, A., Jortner, J. and Pullman, B. (Eds.), Modelling of Biomolecular Structures and Mechanisms, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1995, p. 365.
Carbó, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.
Hodgkin, E.E. and Richards, W.G., Int. J. Quantum Chem., Quantum Biol. Symp., 14 (1987) 105.
Search_Compare, Version 95.0, Molecular Simulations Inc., San Diego, CA.
Maple, J.R., Hwang, M.-J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S. and Hagler, A.T., J. Comput. Chem., 15 (1994) 162.
Hwang, M.-J., Stockfisch, T.P. and Hagler, A.T., J. Am. Chem. Soc., 116 (1994) 2515.
Cerius2, Version 3.0, Molecular Simulations Inc., San Diego, CA.
Ligand_Design, Version 95.0, Molecular Simulations Inc., San Diego, CA.
Discover, Version 95.0, Molecular Simulations Inc., San Diego, CA.
Froloff, N., Windemuth, A. and Honig, B., Protein Sci., 6 (1995) 1293.
Pickett, S.D. and Sternberg, M.J.E., J. Mol. Biol., 231 (1993) 825.
Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.
So, S.-S. and Richards, W.G., J. Med. Chem., 35 (1992) 3201.
Ajay, Chemometr. Intell. Lab., 24 (1994) 19.
Chandonia, J.-M., Neural network based algorithms for protein structure prediction, Ph.D. Thesis, The Committee on Higher Degrees in Biophysics, Harvard University, 1997.
Head, R.D., Smythe, M.L., Oprea, T.I., Waller, C.L., Green, S.M. and Marshall, G.R., J. Am. Chem. Soc., 118 (1996) 3959.
Hansson, T., Marelius, J. and Åqvist, J., J. Comput.-Aided Mol. Design, 12 (1998) 27.
Guo, Z. and Brooks, C.L.I., J. Am. Chem. Soc., 120 (1998) 1920.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
So, SS., Karplus, M. A comparative study of ligand-receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J Comput Aided Mol Des 13, 243–258 (1999). https://doi.org/10.1023/A:1008073215919
Issue Date:
DOI: https://doi.org/10.1023/A:1008073215919