Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Conformational analysis of [Met5]-enkephalin: Solvation and ionization considerations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

[Met5]-Enkephalin has the sequence Tyr-Gly-Gly-Phe-Met. Only the extended conformation of the peptide has been observed by X-ray crystallography. Nuclear magnetic resonance spectroscopy supports the presence of a turn at Gly 3 and Phe 4 in dimethyl sulfoxide. In this study, the peptide conformational states and thermodynamic properties are understood in terms of ionization state and solvent environment. In the calculation, final conformations obtained from multiple independent Monte Carlo simulated annealing conformational searches are starting points for molecular dynamics simulations. In an aqueous environment given by the use of solvation free energy and the zwitterionic state, dominant structural motifs computed are G-P Type II′ bend, G-G Type II′ bend, and G-G Type I′ bend motifs, in order of increasing free energy. In the calculation of the peptide with neutral N- and C-termini and solvation free energy, the extended conformer dominates (by at least a factor of 2.5), and the conformation of another low free energy conformer superimposes well on the pharmacophoric groups of morphine. Neutralization of charge and solvation induce and stabilize the extended conformation, respectively. A mechanism of inter-conversion between the extended conformer and three bent conformers is supported by φ/ψ-scatter plots, and by the conformer relative free energies. An estimate of the entropy change of receptor unbinding is 8.3 cal K-1 mol-1, which gives rise to a -2.5 kcal/mol entropy contribution to the free energy of unbinding at 25 °C. The conformational analysis methodology described here should be useful in studies on short peptides and flexible protein surface loops that have important biological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A. and Morris, H.R., Nature, 258 (1975) 577.

    Google Scholar 

  2. Schwyzer, R., Biopolymers, 37 (1995) 5.

    Google Scholar 

  3. Schiller, P.W., In Udenfriend, S. and Meihofer, J. (Eds.) The Peptides, Vol. 6, Academic Press, Orlando, FL, 1984, pp. 219–268.

    Google Scholar 

  4. Hansen, P.E. and Morgan, B.A., In Udenfriend, S. and Meihofer, J. (Eds.) The Peptides, Vol. 6, Academic Press, Orlando, FL, 1984, pp. 269–321.

    Google Scholar 

  5. Deschamps, J.R., George, C. and Flippen-Anderson, J.L., Biopolymers (Peptide Science), 40 (1996) 121.

    Google Scholar 

  6. Garbay-Jaureguiberry, C., Roques, B.P., Oberlin, R., Anteunis, M. and Lala, A.K., Biochem. Biophys. Res. Commun., 71 (1976) 558.

    Google Scholar 

  7. Jones, C.R., Gibbons, W.A. and Garsky, V., Nature, 262 (1976) 779.

    Google Scholar 

  8. Roques, B.P., Garbay-Jaureguiberry, C., Oberlin, R., Anteunis, M. and Lala, A.K., Nature, 262 (1976) 779.

    Google Scholar 

  9. Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and Urry, D.W., Biochem. Biophys. Res. Commun., 76 (1977) 224.

    Google Scholar 

  10. Graham, W.H., Carter, E.S. and Hicks, R.P., Biopolymers, 32 (1992) 1755.

    Google Scholar 

  11. Isogai, Y., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 74 (1977) 414.

    Google Scholar 

  12. Li, Z. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 6611.

    Google Scholar 

  13. Purisima, O. and Scheraga, H.A., J. Mol. Biol., 84 (1987) 6611.

    Google Scholar 

  14. Moskowitz, J.W., Schmidt, K.E., Wilson, S.R. and Cui, W., Int. J. Quant. Chem. Quant. Chem. Symp., 22 (1988) 611.

    Google Scholar 

  15. Ripoll, D.R. and Scheraga, H.A., J. Protein Chem., 8 (1989) 263.

    Google Scholar 

  16. Kawai, H., Kikuchi, T. and Okamoto, Y., Protein Eng., 3 (1991) 85.

    Google Scholar 

  17. Morales, L.B., Garduño-Juárez, R. and Romero, D., J. Biomol. Struct. Dyn., 8 (1991) 721.

    Google Scholar 

  18. Ishida, T., Yoneda, S., Doi, M., Inoue, M. and Kitamura, K., Biochem. J., 255 (1988) 621.

    Google Scholar 

  19. Perez, J.J., Villar, H.O. and Loew, G.H., J. Comput.-Aided Mol. Design, 6 (1992) 175.

    Google Scholar 

  20. Richardson, J., Adv. Protein Chem., 34 (1981) 167.

    Google Scholar 

  21. Makhatadze, G.I. and Privalov, P.L., Protein Sci., 5 (1996) 507.

    Google Scholar 

  22. Carlacci, L. and Englander, S.W., J. Comput. Chem., 17 (1996) 1002.

    Google Scholar 

  23. Carlacci, L. and Englander, S.W., Biopolymers, 33 (1993) 1271.

    Google Scholar 

  24. Némethy, G., Pottle, M.S. and Scheraga, H.A., J. Phys. Chem., 87 (1983) 1883.

    Google Scholar 

  25. Vila, J., Williams, R.L., Vasquez, M. and Scheraga, H.A., Proteins Struct. Funct. Genet., 10 (1991) 199.

    Google Scholar 

  26. Wesson, L. and Eisenberg, D., Protein Sci., 1 (1992) 227.

    Google Scholar 

  27. Perrot, G., Cheng, B., Gibson, K.D., Vila, J., Palmer, K.A., Nayeem, A., Maigret, B. and Scheraga, H. A., J. Comput. Chem., 13 (1992) 1.

    Google Scholar 

  28. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys., 21 (1953) 1087.

    Google Scholar 

  29. Ponder, J.W. and Richards, F.M., J. Mol. Biol., 193 (1987) 775.

    Google Scholar 

  30. Sibanda, B.L., Blundell, T.L. and Thornton, J.M., J. Mol. Biol., 206 (1989) 759.

    Google Scholar 

  31. Wilmot, C.M. and Thornton, J.M., J. Mol. Biol., 203 (1988) 221.

    Google Scholar 

  32. Gylbert, L., Acta Crystallogr. Sect. B, 29 (1973) 333.

    Google Scholar 

  33. Griffin, J.F., Langs, D.A., Smith, G.D., Blundell, T.L., Tickle, I.J. and Bedarkar, S., Proc. Natl. Acad. Sci. USA, 83 (1986) 3272.

    Google Scholar 

  34. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  35. Griko, Y.V., Makhatadze, G.I., Privalov, P.L. and Hartley, R.W., Protein Sci., 3 (1994) 669.

    Google Scholar 

  36. Martinez, J.C., elHarrous, M., Filimonov, V.V., Mateo, P.L. and Fersht, A.R., Biochemistry, 33 (1994) 3919.

    Google Scholar 

  37. Wintrode, P.L., Makhatadze, G.I. and Privalov, P.L., Proteins Struct. Funct. Genet., 18 (1994) 246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlacci, L. Conformational analysis of [Met5]-enkephalin: Solvation and ionization considerations. J Comput Aided Mol Des 12, 195–213 (1998). https://doi.org/10.1023/A:1007993118927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007993118927

Navigation