Abstract
[Met5]-Enkephalin has the sequence Tyr-Gly-Gly-Phe-Met. Only the extended conformation of the peptide has been observed by X-ray crystallography. Nuclear magnetic resonance spectroscopy supports the presence of a turn at Gly 3 and Phe 4 in dimethyl sulfoxide. In this study, the peptide conformational states and thermodynamic properties are understood in terms of ionization state and solvent environment. In the calculation, final conformations obtained from multiple independent Monte Carlo simulated annealing conformational searches are starting points for molecular dynamics simulations. In an aqueous environment given by the use of solvation free energy and the zwitterionic state, dominant structural motifs computed are G-P Type II′ bend, G-G Type II′ bend, and G-G Type I′ bend motifs, in order of increasing free energy. In the calculation of the peptide with neutral N- and C-termini and solvation free energy, the extended conformer dominates (by at least a factor of 2.5), and the conformation of another low free energy conformer superimposes well on the pharmacophoric groups of morphine. Neutralization of charge and solvation induce and stabilize the extended conformation, respectively. A mechanism of inter-conversion between the extended conformer and three bent conformers is supported by φ/ψ-scatter plots, and by the conformer relative free energies. An estimate of the entropy change of receptor unbinding is 8.3 cal K-1 mol-1, which gives rise to a -2.5 kcal/mol entropy contribution to the free energy of unbinding at 25 °C. The conformational analysis methodology described here should be useful in studies on short peptides and flexible protein surface loops that have important biological implications.
Similar content being viewed by others
References
Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A. and Morris, H.R., Nature, 258 (1975) 577.
Schwyzer, R., Biopolymers, 37 (1995) 5.
Schiller, P.W., In Udenfriend, S. and Meihofer, J. (Eds.) The Peptides, Vol. 6, Academic Press, Orlando, FL, 1984, pp. 219–268.
Hansen, P.E. and Morgan, B.A., In Udenfriend, S. and Meihofer, J. (Eds.) The Peptides, Vol. 6, Academic Press, Orlando, FL, 1984, pp. 269–321.
Deschamps, J.R., George, C. and Flippen-Anderson, J.L., Biopolymers (Peptide Science), 40 (1996) 121.
Garbay-Jaureguiberry, C., Roques, B.P., Oberlin, R., Anteunis, M. and Lala, A.K., Biochem. Biophys. Res. Commun., 71 (1976) 558.
Jones, C.R., Gibbons, W.A. and Garsky, V., Nature, 262 (1976) 779.
Roques, B.P., Garbay-Jaureguiberry, C., Oberlin, R., Anteunis, M. and Lala, A.K., Nature, 262 (1976) 779.
Khaled, M.A., Long, M.M., Thompson, W.D., Bradley, R.J., Brown, G.B. and Urry, D.W., Biochem. Biophys. Res. Commun., 76 (1977) 224.
Graham, W.H., Carter, E.S. and Hicks, R.P., Biopolymers, 32 (1992) 1755.
Isogai, Y., Nemethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 74 (1977) 414.
Li, Z. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 6611.
Purisima, O. and Scheraga, H.A., J. Mol. Biol., 84 (1987) 6611.
Moskowitz, J.W., Schmidt, K.E., Wilson, S.R. and Cui, W., Int. J. Quant. Chem. Quant. Chem. Symp., 22 (1988) 611.
Ripoll, D.R. and Scheraga, H.A., J. Protein Chem., 8 (1989) 263.
Kawai, H., Kikuchi, T. and Okamoto, Y., Protein Eng., 3 (1991) 85.
Morales, L.B., Garduño-Juárez, R. and Romero, D., J. Biomol. Struct. Dyn., 8 (1991) 721.
Ishida, T., Yoneda, S., Doi, M., Inoue, M. and Kitamura, K., Biochem. J., 255 (1988) 621.
Perez, J.J., Villar, H.O. and Loew, G.H., J. Comput.-Aided Mol. Design, 6 (1992) 175.
Richardson, J., Adv. Protein Chem., 34 (1981) 167.
Makhatadze, G.I. and Privalov, P.L., Protein Sci., 5 (1996) 507.
Carlacci, L. and Englander, S.W., J. Comput. Chem., 17 (1996) 1002.
Carlacci, L. and Englander, S.W., Biopolymers, 33 (1993) 1271.
Némethy, G., Pottle, M.S. and Scheraga, H.A., J. Phys. Chem., 87 (1983) 1883.
Vila, J., Williams, R.L., Vasquez, M. and Scheraga, H.A., Proteins Struct. Funct. Genet., 10 (1991) 199.
Wesson, L. and Eisenberg, D., Protein Sci., 1 (1992) 227.
Perrot, G., Cheng, B., Gibson, K.D., Vila, J., Palmer, K.A., Nayeem, A., Maigret, B. and Scheraga, H. A., J. Comput. Chem., 13 (1992) 1.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys., 21 (1953) 1087.
Ponder, J.W. and Richards, F.M., J. Mol. Biol., 193 (1987) 775.
Sibanda, B.L., Blundell, T.L. and Thornton, J.M., J. Mol. Biol., 206 (1989) 759.
Wilmot, C.M. and Thornton, J.M., J. Mol. Biol., 203 (1988) 221.
Gylbert, L., Acta Crystallogr. Sect. B, 29 (1973) 333.
Griffin, J.F., Langs, D.A., Smith, G.D., Blundell, T.L., Tickle, I.J. and Bedarkar, S., Proc. Natl. Acad. Sci. USA, 83 (1986) 3272.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.
Griko, Y.V., Makhatadze, G.I., Privalov, P.L. and Hartley, R.W., Protein Sci., 3 (1994) 669.
Martinez, J.C., elHarrous, M., Filimonov, V.V., Mateo, P.L. and Fersht, A.R., Biochemistry, 33 (1994) 3919.
Wintrode, P.L., Makhatadze, G.I. and Privalov, P.L., Proteins Struct. Funct. Genet., 18 (1994) 246.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Carlacci, L. Conformational analysis of [Met5]-enkephalin: Solvation and ionization considerations. J Comput Aided Mol Des 12, 195–213 (1998). https://doi.org/10.1023/A:1007993118927
Issue Date:
DOI: https://doi.org/10.1023/A:1007993118927