Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A new condensed isoprene oxidation mechanism forglobal atmospheric modeling (MIM) was derived from ahighly detailed master chemical mechanism (MCM). In abox model intercomparison covering a wide range ofboundary layer conditions the MIM was compared withthe MCM and with five other condensed mechanisms, someof which have already been used in global modelingstudies of nonmethane hydrocarbon chemistry. Theresults of MCM and MIM were generally in goodagreement, but the other tested mechanisms exhibitedsubstantial differences relative to the MCM as well asrelative to each other. Different formation yields,reactivities and degradation pathways of organicnitrates formed in the course of isoprene oxidationwere identified as a major reason for the deviations.The relevance of the box model results for chemistrytransport models is discussed, and the need for avalidated reference mechanism and for an improvedrepresentation of isoprene chemistry in global modelsis pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data 2, 1–216.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.

    Google Scholar 

  • Biesenthal, T. A., Bottenheim, J. W., Shepson, P. B., and Brickell, P. C., 1998: The chemistry of biogenic hydrocarbons at a rural site in eastern Canada, J. Geophys. Res. 103 (D19), 25487–25498.

    Google Scholar 

  • Brasseur, G. P., Hauglustaine, D. A., Walters, S., Rasch, P. J., Muller, J. F., Granier, C., and Tie, X. X., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers. 1. Model description, J. Geophys. Res. 103 (D21), 28265–28289.

    Google Scholar 

  • Brühl, C. and Crutzen, P. J., 1989: On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16 (7), 703–706.

    Google Scholar 

  • Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., Bandy, B. J., and Penkett, S. A., 1999: Modeling OH, HO2, and RO2 radicals in the marine boundary layer: 1. Model construction and comparison with field measurements, J. Geophys. Res., in press.

  • Carslaw, N., Lewis, A. C., McQuaid, J. B., and Pilling, M. J., 1999: A detailed study of isoprene chemistry during the EASE96 campaign: J199, a case study, Atmos. Environ, submitted.

  • Carter, W. P. L., 1996: Condensed atmospheric photooxidation mechanisms for isoprene, Atmos. Environ. 30, 4275–4290.

    Google Scholar 

  • Carter, W. P. L. and Atkinson, R., 1996: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx, Int. J. Chem. Kinet. 28, 497–530.

    Google Scholar 

  • Chen, X. H., Hulbert, D., and Shepson, P. B., 1998: Measurement of the organic nitrate yield from OH reaction with isoprene, J. Geophys. Res. 103 (D19), 25563–25568.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modelling, JPL Publication 97–4.

  • Duncan, B. N. and Chameides, W. L., 1998: Effects of urban emission control strategies on the export of ozone and ozone precursors from the urban atmosphere to the troposphere, J. Geophys. Res. 103 (D21), 28159–28179.

    Google Scholar 

  • Hauglustaine, D. A., Brasseur, G. P., Walters, S., Rasch, P. J., Muller, J. F., Emmons, L. K., and Carroll, C.A., 1998: MOZART, a global chemical transport model for ozone and related chemical tracers. 2. Model results and evaluation, J. Geophys. Res. 103 (D21), 28291–28335.

    Google Scholar 

  • Horowitz, L. W., Liang, J. Y., Gardner, G. M., and Jacob, D. J., 1998: Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry, J. Geophys. Res. 103 (D11), 13451–13476.

    Google Scholar 

  • Houweling, S., Dentener, F., and Lelieveld, J., 1998: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res. 103 (D9), 10673–10696.

    Google Scholar 

  • Jacobs, P. J., Harrison, D., Carslaw, N., Creasey, D. J., Heard, D. E., Hunter, M. C., Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., Seakins, P. W., and Jenkin, M. E.: An experimental and modelling study of OH and HO2 radical chemistry in a forested region of north-western Greece, manuscript in preparation.

  • Jenkin, M. E., Boyd, A. A., and Lesclaux, R., 1998: Peroxy radical kinetics resulting from the OH initiated oxidation of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and isoprene, J. Atmos. Chem. 29, 267–298.

    Google Scholar 

  • Jenkin, M. E., Saunders, S. M., and Pilling, M. J., 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ. 31, 81–104.

    Google Scholar 

  • von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J., 1999: Sensitivity studies of isoprene and acetone chemistry in a 3-D global model, Geophys. Res. Abs. 1, 498, EGS, The Hague.

    Google Scholar 

  • Kuhn, M., Builtjes, P. J. H., Poppe, D. Simpson, D., Stockwell, W. R., Anderssonskold, Y., Baart, A., Das, M., Fiedler, F., Hov, O., Kirchner, F., Makar, P. A., Milford, J. B., Roemer, M. G. M., Ruhnke, R., Strand, A., Vogel, B., and Vogel, H., 1998: Intercomparison of the gas-phase chemistry in several chemistry and transport models, Atmos. Environ. 32, 693–709.

    Google Scholar 

  • Lamb, B., Gay, D., Westberg, H., and Pierce, T., 1993: A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ. 27, 1673–1690.

    Google Scholar 

  • Lawrence, M. G., Crutzen, P. J., Rasch, P. J., Eaton, B. E., and Mahowald, N.M.: A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation, J. Geophys. Res., in press.

  • Madronich, S. and Calvert, J. G., 1989: The NCAR master mechanism of the gas-phase chemistry-Version 2.0, Rep. NCAR/TN-333+STR, National Center for Atmopheric Research.

  • Malleson, A. M., Kellett, H. M., Myhill, R. G., and Sweetenham, W. P., 1990: FACSIMILE User Guide, Harwell Laboratory, Oxfordshire.

    Google Scholar 

  • Moxim, W. J., Levy II, H., and Kasibhatla, P. S., 1996: Simulated global tropospheric PAN: Its transport and impact on NOx, J. Geophys. Res. 101 (D7), 12621–12638.

    Google Scholar 

  • Müller, J.-F. and Brasseur, G., 1999: Sources of upper tropospheric HOx: A three-dimensional study, J. Geophys. Res. 104 (D1), 1705–1715.

    Google Scholar 

  • Poisson, N., 1997: Impact des hydrocarbures non méthaniques sur la chimie troposphérique, Université Paris VII, Paris.

    Google Scholar 

  • Poisson, N., Kanakidou, M., and Crutzen, P. J., 1998: Impact of non-methane hydrocarbons on tropospheric chemistry and particularly the oxidizing power of the global troposphere: 3-Dimensional Modelling results, J. Atmos. Chem., submitted.

  • Poisson, N., Kanakidou, M., Bonsang, B., Behmann, T., Burrows, J., Fischer, H., Golz, C., Harder, H., Lewis, A., Moortgat, G. K., Nunes, T., Pio, C., Platt, U., Sauer, F., Schuster, G., Seakins, P., Senzig, J., Seuwen, R., Trapp, D., Voltz-Thomas, A., Zenker, T., and Zitzelberger, R., 1999: The impact of natural non-methane hydrocarbon oxidation on the free radical and ozone budgets above a eucalyptus forest, Chemosphere, in press.

  • Ruppert, L., Spittler, M., and Becker, K. H., 1999: Influence of biogenic hydrocarbons on the ozone formation in a simplified VOC/NOx-Mix, Geophys Res. Abs. 1, 497, EGS, The Hague, 1999.

    Google Scholar 

  • Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J., 1997: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ. 31, 1249, <http://www.chem.leeds.ac.uk/Atmospheric/MCM/main.html>

    Google Scholar 

  • Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S., 1997: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. 102 (D22), 25847–25879.

    Google Scholar 

  • Warneke, C., Holzinger, R., Hansel, A., Jordan, A., Lindinger, W., Pöschl, U., Williams, J., Crutzen, P. J., Scheeren, H. A., and Lelieveld, J., 1999: Isoprene and its oxidation products methyl vinyl ketone, methacrolein and isoprene related peroxides measured online over a tropical rainforest in Surinam in March 1998, J. Atmos. Chem., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöschl, U., von Kuhlmann, R., Poisson, N. et al. Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling. Journal of Atmospheric Chemistry 37, 29–52 (2000). https://doi.org/10.1023/A:1006391009798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006391009798

Navigation