Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Why Combine Logics?

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Combining logics has become a rapidly expanding entreprise that is inspired mainly by concerns about modularity and the wish to join together tailor made logical tools into more powerful but still manageable ones. A natural question is whether it offers anything new over and above existing standard languages.

By analysing a number of applications where combined logics arise, we argue that combined logics are a potentially valuable tool in applied logic, and that endorsements of standard languages often miss the point. Using the history of quantified modal logic as our main example, we also show that the use of combined structures and logics is a recurring theme in the analysis of existing logical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BARWISE, J., 1985, ‘Model theoretic logics: background and aims’, In J. Barwise and S. Feferman (eds) Model-Theoretic Logics, Springer, New York, 2–23.

    Google Scholar 

  2. VAN BENTHEM, J., 1984, ‘Correspondence theory’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 167–247.

    Google Scholar 

  3. VAN BENTHEM, J., 1993, ‘Beyond accessibility’, In M. de Rijke (ed), Diamonds and Defaults, Kluwer Academic Publishers, Dordrecht, 1–18.

    Google Scholar 

  4. BLACKBURN, P., and C. GARDENT, 1995, ‘A specification language for Lexical Functional Grammars’, Proceedings of the 7th Conference of the European Chapter of the Association of Computational Linguistics, Dublin.

  5. BLACKBURN, P., W. MEYER-VIOL, and M. DE RIJKE, 1996, ‘A proof system for finite trees’, In Proceedings of CSL'95, Springer, New York, 86–105.

    Google Scholar 

  6. BLACKBURN, P., and M. DE RIJKE, 1997, ‘Zooming in, zooming out’, Journal of Logic, Language and Information 6, 5–31.

    Google Scholar 

  7. CARNAP, R., 1947, Meaning and Necessity, The University of Chicago Press, Chicago.

    Google Scholar 

  8. FINE, K., and G. SCHURZ, 1991, ‘Transfer theorems for stratified multi-modal logics’, In Proceedings of the Arthur Prior Memorial Conference, To appear.

  9. FINGER, M., and D. M. GABBAY, 1992, ‘Adding a temporal dimension to a logic system’, Journal of Logic, Language and Information 1, 203–233.

    Google Scholar 

  10. FINGER, M., and D. M. GABBAY, 1996, ‘Combining temporal logic systems’, Notre Dame Journal of Formal Logic 37, 204–232.

    Google Scholar 

  11. GABBAY, D. M., 1981, ‘An irreflexivity lemma with applications to axiomatisations of conditions on linear frames’, In U. Mönnich (ed), Aspects of Philosophical Logic, Reidel, Dordrecht, 67–89.

    Google Scholar 

  12. GABBAY, D. M., 199-, Fibered Semantics, Manuscript, Imperial College.

  13. GARSON, J., 1984, ‘Quantification in modal logic’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 249–307.

    Google Scholar 

  14. GAZDAR, G., E. KLEIN, G. PULLUM, I. SAG, 1985, Generalised Phrase Structure Grammar, Basil Blackwell, Oxford.

    Google Scholar 

  15. GHILARDI, S., 1991, ‘Incompleteness results in Kripke semantics’, Journal of Symbolic Logic 56, 517–538.

    Google Scholar 

  16. GROENENDIJK, J., and M. STOKHOF, 1991, ‘Dynamic predicate logic’, Linguistics and Philosophy, 14, 39–100.

    Google Scholar 

  17. GUREVICH, Y., 1991, ‘Evolving algebras: a tutorial introduction’, Bulletin EATCS 43, 264–284.

    Google Scholar 

  18. HAREL, D., 1984, ‘Dynamic logic’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic 2, Reidel, Dordrecht, 497–604.

    Google Scholar 

  19. HEMASPAANDRA, E., 1994, ‘Complexity transfer for modal logic’, Proceedings of the Ninth IEEE Symposium on Logic In Computer Science (LICS'94), 1994.

  20. HEMASPAANDRA, E., 1996, ‘The price of universality’, Notre Dame Journal of Formal Logic 37, 174–203.

    Google Scholar 

  21. KAMP, H., and U. REYLE, 1993, From Discourse to Logic, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  22. KAPLAN, R., and J. BRESNAN, 1982, ‘Lexical-functional grammar: a formal system for grammatical representation’, In J. Bresnan (ed), The Mental Representation of Grammatical Relations, MIT Press, Cambridge, 173–281.

    Google Scholar 

  23. KRACHT, M., and F. WOLTER, 1991, ‘Properties of independently axiomatisable bimodal logics’, Journal of Symbolic Logic 56, 1469–1485.

    Google Scholar 

  24. Eiben, G., Á. Kurucz and A. JÁnossy, 1996, Combining logics via combining algebraic theories', Notre Dame Journal of Formal Logic 37, 366–380.

    Google Scholar 

  25. MEYER, R. K., and E. D. MARES, 1994, ‘The semantics of entailment 0’, In K. Došen and P. Schröder-Heister (eds) Substructural Logic, Oxford University Press, 239–258.

  26. MILNER, R., 1989, Communication and Concurrency, Prentice-Hall.

  27. MUSKENS, R., 1996, Meaning and Partiality, Studies in Logic, Language and Information. CSLI Publications, Stanford.

    Google Scholar 

  28. ONO, H., 1983, ‘Model extension theorem and Craig's interpolation theorem for intermediate predicate logics’, Reports on Mathematical Logic 15, 41–58.

    Google Scholar 

  29. POPKORN, S., 1994, First Steps in Modal Logic, Cambridge University Press.

  30. SELIGMAN, J., 1990, Perspectives: a Relativistic Approach to the Theory of Information, PhD Thesis, University of Edinburgh.

  31. SELIGMAN, J., 1996, Combining logics with ease, In preparation.

  32. SHEHTMAN, V., and D. SKVORTSOV, 1990, ‘Semantics of non-classical first-order predicate logics’, In P. Petkov (ed), Mathematical Logic, Plenum Press, New York, 105–116.

    Google Scholar 

  33. SPAAN, E., 1993, Complexity of Modal Logics, PhD Thesis, University of Amsterdam.

  34. THOMASON, R., 1984, ‘Combinations of tense and modality’, In D. Gabbay and F. Guenthner (eds) Handbook of Philosophical Logic (II), Reidel, Dordrecht, 135–165.

    Google Scholar 

  35. VERMEULEN, K., and A. VISSER, 1996, ‘Dynamic bracketing and discourse representation’, Notre Dame Journal of Formal Logic 37, 321–365.

    Google Scholar 

  36. WOLTER, F., 1996, ‘A counterexample in tense logic’, Notre Dame Journal of Formal Logic 37, 167–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackburn, P., de Rijke, M. Why Combine Logics?. Studia Logica 59, 5–27 (1997). https://doi.org/10.1023/A:1004991115882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004991115882

Navigation