Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Sensitivity analysis and decomposition of unreliable production lines with blocking

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The analysis of finite‐buffered, unreliable production lines is often based on the method of decomposition, where the original system is decomposed into a series of two‐stage subsystems that can be modeled as quasi birth‐death processes. In this paper, we present methods for computing the gradients of the equilibrium distribution vector for such processes. Then we consider a specific production line with finite buffers and machine breakdowns and develop an algorithm that incorporates gradient estimation into the framework of Gershwin's approximate decomposition. The algorithm is applied to the problem of workforce allocation to the machines of a production line to maximize throughput. It is shown that this problem is equivalent to a convex mathematical programming problem and, therefore, a globally optimal solution can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Baskett, K.M. Chandy, R.R. Muntz and F. Palacios, Open, closed and mixed networks of queues with different classes of customers, Journal of the Association for Computing Machinery 22 (1975) 248–260.

    Google Scholar 

  2. H. Baruh and T. Altiok, Analytical perturbations in Markov chains, European Journal of Operational Research 51 (1991) 210–222.

    Article  Google Scholar 

  3. P.P. Bocharov, Queuing system of limited capacity with state dependent distributions of phase type, Automation and Remote Control (English translation) (1985) 31–38.

  4. P.P. Bocharov, Approximate method of design of open nonexponential production networks of finite capacity with losses or blocking, Automation and Remote Control (English translation) (1987) 55–65.

  5. J.A. Buzacott and J.G. Shanthikumar, Stochastic Models of Manufacturing Systems (Prentice-Hall, 1993).

  6. X.-R. Cao and Y.-C. Ho, Sensitivity analysis and optimization of throughput in a production line with blocking, IEEE Transactions on Automatic Control 32 (1987) 959–967.

    Google Scholar 

  7. M. Caramanis, Production system design: A discrete event dynamic system and generalized Benders' decomposition approach, International Journal of Production Research 25 (1987) 1223–1234.

    Google Scholar 

  8. J.L. Carrol, A. Van De Liefvoort and L. Lipsky, Solutions of M=G=1==N-type loops with extensions to M=G=1 and GI=M=1 queues, Operations Research 30 (1982) 490–514.

    Google Scholar 

  9. Y.F. Choong and S.B. Gershwin, A decomposition method for the approximate evaluation of capacitated transfer lines with unreliable machines and random processing times, IIE Transactions 19 (1987) 150–159.

    Google Scholar 

  10. Y. Dallery, R. David and X.-L. Xie, An efficient algorithm for analysis of transfer lines with unreliable machines and finite buffers, IIE Transactions 20 (1988) 280–283.

    Google Scholar 

  11. Y. Dallery and S. Gershwin, Manufacturing flow line systems: a review of models and analytical results, Queuing Systems 12 (1992) 3–94.

    Google Scholar 

  12. Y. Dallery, Z. Liu and D. Towsley, Equivalence, reversibility, symmetry and concavity properties of fork-join networks with blocking, Journal of the Association for Computing Machinery 41 (1994) 903–942.

    Google Scholar 

  13. M.B.M. De Koster, An improved algorithm to approximate the behaviour of flow lines, International Journal of Production Research 26 (1988) 691–700.

    Google Scholar 

  14. R.V. Evans, Geometric distribution in some two-dimensional queuing systems, Operations Research 15 (1967) 830–846.

    Google Scholar 

  15. F.R. Gantmacher, Matrix Theory, Vol. I (Chelsea Publ., 1977).

  16. S.B. Gershwin, An efficient decomposition method for the approximate evaluation of tandem queues with finite storage space and blocking, Operations Research 35 (1987) 291–305.

    Google Scholar 

  17. S.B. Gershwin, An efficient decomposition algorithm for unreliable tandem queuing systems with finite buffers, in: Queueing Networks with Blocking, eds. H.G. Perros and T. Altiok (North-Holland, 1989) pp. 127–146.

  18. S.B. Gershwin, Manufacturing Systems Engineering (Prentice-Hall, 1994).

  19. S.B. Gershwin and O. Berman, Analysis of transfer lines consisting of two unreliable machines with random processing times and finite storage buffers, AIIE Transactions 13 (1981) 1–11.

    Google Scholar 

  20. C.R. Glassey and Y. Hong, Analysis of behaviour of an unreliable transfer line with (n _ 1) interstage storage buffers, International Journal of Production Research 31 (1993) 519–530.

    Article  Google Scholar 

  21. G.H. Golub and C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press, 1984).

  22. W. Gordon and G. Newell, Closed queueing systems with exponential machines, Operations Research 15 (1967) 254–265.

    Google Scholar 

  23. L. G¨un and A. Makowski, Matrix-geometric solution for finite capacity queues with phase-type distributions, in: Performance '87, eds. P.-J. Courtouis and G. Latouche (1988) pp. 269–282.

  24. Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic Systems (Kluwer, 1991).

  25. J. Jackson, Networks of waiting lines, Operations Research 5 (1957) 518–521.

    Google Scholar 

  26. V.S. Kouikoglou, Optimal rate allocation in unreliable, assembly/disassembly production networks with blocking, in: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI (1999) pp. 1126–1131.

  27. V.S. Kouikoglou and Y.A. Phillis, Discrete event modeling and optimization of production lines with random rates, IEEE Transactions on Robotics and Automation 10 (1994) 153–159.

    Google Scholar 

  28. R.A. Marie and J.M. Pellaumail, Steady-state probabilities for a queue with a general service distribution and state-dependent arrivals, IEEE Transactions on Software Engineering 9 (1983) 109–113.

    Google Scholar 

  29. D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer, Advances in Applied Probability 20 (1988) 646–676.

    Google Scholar 

  30. M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach (Johns Hopkins University Press, 1981).

  31. Y.A. Phillis, V.S. Kouikoglou, D. Sourlas and V. Manousiouthakis, Design of serial production systems using discrete event simulation and nonconvex programming techniques, International Journal of Production Research 35 (1997) 753–766.

    Google Scholar 

  32. V. Ramswami and G. Latouche, A general class of Markov processes with explicit matrix-geometric solutions, OR Spectrum 8 (1986) 209–218.

    Google Scholar 

  33. J.G. Shanthikumar and D.D. Yao, Second-order stochastic properties in queueing systems, IEEE Proceedings 77 (1989) 162–170.

    Google Scholar 

  34. C. Shick and S.B. Gershwin, Modeling and analysis of unreliable transfer lines with finite interstage buffers, in: Complex Materials Handling and Assembly Systems VI, Report ESL-FR–834–6, MIT (1978).

  35. P.M. Snyder and W.J. Stewart, Explicit and iterative numerical approaches to solving queueing models, Operations Research 33 (1985) 183–202.

    Google Scholar 

  36. Y. Takahashi, H. Miyahara and T. Hasegawa, An approximation method for open restricted queueing networks, Operations Research 28 (1980) 594–602.

    Google Scholar 

  37. S. Yeralan and E.J. Muth, A general model of a production line with intermediate buffer and station breakdown, IIE Transactions 10 (1987) 130–139.

    Google Scholar 

  38. S. Yeralan and B. Tan, Analysis of multistation production systems with limited buffer capacity, Part 1: Subsystem model, Mathematical and Computer Modelling 25 (1997) 109–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouikoglou, V.S. Sensitivity analysis and decomposition of unreliable production lines with blocking. Annals of Operations Research 93, 245–264 (2000). https://doi.org/10.1023/A:1018975923886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018975923886

Keywords

Navigation