Abstract
Thephase functions of N-dimensional (N-D) digital all-pass filtersare investigated to approximate a prescribed phase response ina frequency region. The set of phase functions of the all-passfilters have common properties with some nonlinear approximatingfunctions. This similarity answers the question of characterizationof minimal approximation in the set of phase functions. The optimalapproximation is characterized by known theorems of TschebycheffApproximation Theory. Among the main tools of the theory, theGlobal and Local Kolmogoroff Criteria, are shown to give necessaryand sufficient conditions for best approximations in the phasefunctions of N-D all-pass filters. Moreover, this best approximationin the phase functions is shown to be a global minimum. The approximationon discrete point sets (H-sets) in a compact multidimensionaldomain is studied. Optimal N-dimensional approximation is notunique, an inherent property of functions of several variables.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
X. Liu, “Phase Equalisation of Multidimensional Wave Filters Derived by Rotation,” Signal Processing, vol. 12, 1987, pp. 177-189.
G. Giovanni, “2-D Recursive Phase Filters for the Solution of Two-Dim. Wave Equations,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-27, no. 4, 1979, pp. 367-372.
P.A. Ramamoorthy and L.T. Bruton, “Design of Two-Dimensional Digital Filters,” in Two-Dimensional Signal Processing I, T.S. Huang, Ed., Berlin: Springer-Verlag, 1976, Chap. 3.
D.E. Dudgeon and R.M. Mersereau, Multdimensional Digital Signal Processing, Englewood Cliffs, New Jersey: Prentice Hall, 1984.
G. Vachtsevanos, “Design of Two-Dimensional IIR Digital Filters via Linear Programming,” Signal Processing, vol. 12, 1987, pp. 17-26.
W.S. Kafri, “Phase and Delay Approximation for 1-D Digital IIR Filter in L ? Norm,” Signal Processing, vol. 57, no. 2, 1997.
A.G. Decszky, “Equiripple and Minimax (Chebychev) Approximation for Recursive Digital Filters,” IEEE Trans. On Acoustics, Speech, And Signal Processing, vol. ASSP-22, no. 2, April 1974, pp. 98-111.
Z. Jing, “A New Method for Digital All-Pass Filter Design,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP 35, no. 11, Nov. 1987, pp. 1557-1564.
M. Lang, “Optimal Weighted Phase Equalisation according to the L ?-Norm,” Signal Processing, vol. 27, 1992, pp. 87-97.
C.B. Dunham, “Characterisability and Uniqueness in Real Chebychev Approximation,” J. Approx. Theory, vol. 2, 1969, pp. 374-384.
C.B. Dunham, “Chebychev Approximation by Families with the Betweeness Property,” Trans. Amer. Math. Soc., vol. 136, 1969, pp. 151-157.
J. Rice, The Approximation of Functions, Vol. 2, London: Addison Wesley, 1969.
G. Meinardus and D. Schwedt, “Nichtlineare Approximation,” Arch. Rat. Mech. Anal., vol. 17, 1964, pp. 297-326.
L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, 1966.
L. Collatz and W. Krabs, Approximationstheorie, Teubner Studien Bücher, 1972.
G.D. Taylor, “On Minimal H-Sets,” J. Approx. Theory, vol. 5, 1972, pp. 113-117.
L. Collatz, “Inclusion Theorems for the Minimal Distance in Rational Tschebyscheff Approximation with Several Variables,” in Approximation of Functions, H. Garabedian (Editor), North Holland: Elsevier, 1965, pp. 43-56.
. L. Collatz, “The Determination of H-Sets for the Inclusion Theorem in Nonlinear Tschebycheff Approximation,” Personal communication.
L. Collatz, “Rationale Trigonometrische Tschebycheff Approximation in Zwei Variablen,” Publications De L'Institut Math´ematique, Neurelle serie, Tom 6(20), Beograd, 1966, pp. 57-63.
B. Brosowski, Nichtlinere Tschebyscheff Approximation, Mannheim: Bibliographisches Institute 808/808a, 1969.
B. Brosowski, “Einige Bemerkungen zum Verallgemeinerten Kolmogoroffschen Kriterium,” Funktional Analytisch Methoden der Num. Math., Tagung Oberwolfach, Collatz (Ed.), 1967, pp. 25-34.
B. Brosowski, “Ñber Extremalsignaturen linearer Polynome in n Veränderlichen,” Num. Math., 7, 1965, pp. 396-405.
W. Krabs, “Ñber die Reichweite des lokalen Kolmogoroff-Kriteriums bei der nicht-linearen gleichmäszigen Approximation,” J. Approximation Theory, vol. 2, 1969, pp. 258-264.
W. Krabs, “Ñber differenzierbare asymptotisch konvexe Funktionenfamilien bei der nicht-linearen gleichmäszigen Approximation,” Arch. Rational Mech. Anal., vol. 27, 1967, pp. 275-288.
E.W. Cheney, Introduction to Approximation Theory, New York: McGraw-Hill, 1966.
J. Rice, The Approximation of Functions, Vol. 1, London: Addison Wesley, 1964.
G.A.Watson, “AMultiple Exchange Algorithm for Multivariate Chebychev Approximation,” SIAM J. Numer. Anal., vol. 12, no. 1, March 1975, pp. 46-52.
C. Koniowwski, A First Course in Algebraic Topology, London: Cambridge University Press, 1980.
J. Dieudonné Foundations of Modern Analysis, New York: Academic Press, 1968.
W. Rudin, Function Theory in Polydiscs, New York: Benjamin, INC, 1969.
D.C. Ghiglia and M.D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms and Software, New York: John Wiley, 1998.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kafri, W.S., Hashlamoun, W. N-Dimensional Phase Approximation in the L∞-Norm. Multidimensional Systems and Signal Processing 11, 257–275 (2000). https://doi.org/10.1023/A:1008438614699
Issue Date:
DOI: https://doi.org/10.1023/A:1008438614699