Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

N-Dimensional Phase Approximation in the L-Norm

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Thephase functions of N-dimensional (N-D) digital all-pass filtersare investigated to approximate a prescribed phase response ina frequency region. The set of phase functions of the all-passfilters have common properties with some nonlinear approximatingfunctions. This similarity answers the question of characterizationof minimal approximation in the set of phase functions. The optimalapproximation is characterized by known theorems of TschebycheffApproximation Theory. Among the main tools of the theory, theGlobal and Local Kolmogoroff Criteria, are shown to give necessaryand sufficient conditions for best approximations in the phasefunctions of N-D all-pass filters. Moreover, this best approximationin the phase functions is shown to be a global minimum. The approximationon discrete point sets (H-sets) in a compact multidimensionaldomain is studied. Optimal N-dimensional approximation is notunique, an inherent property of functions of several variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. X. Liu, “Phase Equalisation of Multidimensional Wave Filters Derived by Rotation,” Signal Processing, vol. 12, 1987, pp. 177-189.

    Google Scholar 

  2. G. Giovanni, “2-D Recursive Phase Filters for the Solution of Two-Dim. Wave Equations,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-27, no. 4, 1979, pp. 367-372.

    Google Scholar 

  3. P.A. Ramamoorthy and L.T. Bruton, “Design of Two-Dimensional Digital Filters,” in Two-Dimensional Signal Processing I, T.S. Huang, Ed., Berlin: Springer-Verlag, 1976, Chap. 3.

    Google Scholar 

  4. D.E. Dudgeon and R.M. Mersereau, Multdimensional Digital Signal Processing, Englewood Cliffs, New Jersey: Prentice Hall, 1984.

    Google Scholar 

  5. G. Vachtsevanos, “Design of Two-Dimensional IIR Digital Filters via Linear Programming,” Signal Processing, vol. 12, 1987, pp. 17-26.

    Google Scholar 

  6. W.S. Kafri, “Phase and Delay Approximation for 1-D Digital IIR Filter in L ? Norm,” Signal Processing, vol. 57, no. 2, 1997.

  7. A.G. Decszky, “Equiripple and Minimax (Chebychev) Approximation for Recursive Digital Filters,” IEEE Trans. On Acoustics, Speech, And Signal Processing, vol. ASSP-22, no. 2, April 1974, pp. 98-111.

    Google Scholar 

  8. Z. Jing, “A New Method for Digital All-Pass Filter Design,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP 35, no. 11, Nov. 1987, pp. 1557-1564.

    Google Scholar 

  9. M. Lang, “Optimal Weighted Phase Equalisation according to the L ?-Norm,” Signal Processing, vol. 27, 1992, pp. 87-97.

    Google Scholar 

  10. C.B. Dunham, “Characterisability and Uniqueness in Real Chebychev Approximation,” J. Approx. Theory, vol. 2, 1969, pp. 374-384.

    Google Scholar 

  11. C.B. Dunham, “Chebychev Approximation by Families with the Betweeness Property,” Trans. Amer. Math. Soc., vol. 136, 1969, pp. 151-157.

    Google Scholar 

  12. J. Rice, The Approximation of Functions, Vol. 2, London: Addison Wesley, 1969.

    Google Scholar 

  13. G. Meinardus and D. Schwedt, “Nichtlineare Approximation,” Arch. Rat. Mech. Anal., vol. 17, 1964, pp. 297-326.

    Google Scholar 

  14. L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press, 1966.

  15. L. Collatz and W. Krabs, Approximationstheorie, Teubner Studien Bücher, 1972.

  16. G.D. Taylor, “On Minimal H-Sets,” J. Approx. Theory, vol. 5, 1972, pp. 113-117.

    Google Scholar 

  17. L. Collatz, “Inclusion Theorems for the Minimal Distance in Rational Tschebyscheff Approximation with Several Variables,” in Approximation of Functions, H. Garabedian (Editor), North Holland: Elsevier, 1965, pp. 43-56.

    Google Scholar 

  18. . L. Collatz, “The Determination of H-Sets for the Inclusion Theorem in Nonlinear Tschebycheff Approximation,” Personal communication.

  19. L. Collatz, “Rationale Trigonometrische Tschebycheff Approximation in Zwei Variablen,” Publications De L'Institut Math´ematique, Neurelle serie, Tom 6(20), Beograd, 1966, pp. 57-63.

    Google Scholar 

  20. B. Brosowski, Nichtlinere Tschebyscheff Approximation, Mannheim: Bibliographisches Institute 808/808a, 1969.

    Google Scholar 

  21. B. Brosowski, “Einige Bemerkungen zum Verallgemeinerten Kolmogoroffschen Kriterium,” Funktional Analytisch Methoden der Num. Math., Tagung Oberwolfach, Collatz (Ed.), 1967, pp. 25-34.

  22. B. Brosowski, “Ñber Extremalsignaturen linearer Polynome in n Veränderlichen,” Num. Math., 7, 1965, pp. 396-405.

    Google Scholar 

  23. W. Krabs, “Ñber die Reichweite des lokalen Kolmogoroff-Kriteriums bei der nicht-linearen gleichmäszigen Approximation,” J. Approximation Theory, vol. 2, 1969, pp. 258-264.

    Google Scholar 

  24. W. Krabs, “Ñber differenzierbare asymptotisch konvexe Funktionenfamilien bei der nicht-linearen gleichmäszigen Approximation,” Arch. Rational Mech. Anal., vol. 27, 1967, pp. 275-288.

    Google Scholar 

  25. E.W. Cheney, Introduction to Approximation Theory, New York: McGraw-Hill, 1966.

    Google Scholar 

  26. J. Rice, The Approximation of Functions, Vol. 1, London: Addison Wesley, 1964.

    Google Scholar 

  27. G.A.Watson, “AMultiple Exchange Algorithm for Multivariate Chebychev Approximation,” SIAM J. Numer. Anal., vol. 12, no. 1, March 1975, pp. 46-52.

    Google Scholar 

  28. C. Koniowwski, A First Course in Algebraic Topology, London: Cambridge University Press, 1980.

    Google Scholar 

  29. J. Dieudonné Foundations of Modern Analysis, New York: Academic Press, 1968.

    Google Scholar 

  30. W. Rudin, Function Theory in Polydiscs, New York: Benjamin, INC, 1969.

    Google Scholar 

  31. D.C. Ghiglia and M.D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms and Software, New York: John Wiley, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kafri, W.S., Hashlamoun, W. N-Dimensional Phase Approximation in the L-Norm. Multidimensional Systems and Signal Processing 11, 257–275 (2000). https://doi.org/10.1023/A:1008438614699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008438614699

Navigation