Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Skin Cancer Segmentation Based on Triangular Intuitionistic Fuzzy Sets

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

A Correction to this article was published on 23 March 2023

This article has been updated

Abstract

Malignant Melanoma is a dangerous form of skin cancer, and its detection is a challenging task as it appears in numerous ranges of size, shape, and shading with various skin tones. Also, artefacts like hairs, outlines, blood vessels, and boils add further complexity. A simplified clustering method is proposed in this paper to improve melanoma detection while reducing time complexity.The triangular membership function (TMF) is used to detect the initial regions for obtaining initial centroids. These initial centroids are used to apply intuitionistic fuzzy c-means clustering. The TMF helps in identifying the initial clusters and regions and reduces the number of iterations needed for segmentation. The proposed method effectively detects skin cancer regions with an average accuracy of 90% and performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be made available on request from the author.

Change history

References

  1. Santosh K, Wendling L, Antani S, Thoma GR. Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell Syst. 2016;31(3):66–75.

    Article  Google Scholar 

  2. Santosh K, Roy PP. Arrow detection in biomedical images using sequential classifier. Int J Mach Learn Cybern. 2018;9(6):993–1006.

    Article  Google Scholar 

  3. Oliveira RB, Mercedes Filho E, Ma Z, Papa JP, Pereira AS, Tavares JMR. Computational methods for the image segmentation of pigmented skin lesions: a review. Comput Methods Prog Biomed. 2016;131:127–41.

    Article  Google Scholar 

  4. Koundal D, Sharma B. Advanced neutrosophic set-based ultrasound image analysis. In: Neutrosophic Set in Medical Image Analysis, 2019; 51–73. Elsevier.

  5. Al-Masni MA, Al-Antari MA, Choi M-T, Han S-M, Kim T-S. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Prog Biomed. 2018;162:221–31.

    Article  Google Scholar 

  6. Olugbara OO, Taiwo TB, Heukelman D. Segmentation of melanoma skin lesion using perceptual color difference saliency with morphological analysis. Math Prob Eng 2018;2018.

  7. Pennisi A, Bloisi DD, Nardi D, Giampetruzzi AR, Mondino C, Facchiano A. Skin lesion image segmentation using delaunay triangulation for melanoma detection. Comput Med Imaging Graph. 2016;52:89–103.

    Article  Google Scholar 

  8. Yuan Y. Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. 2017. arXiv preprint arXiv:1703.05165.

  9. Korotkov K, Garcia R. Computerized analysis of pigmented skin lesions: a review. Artif Intell Med. 2012;56(2):69–90.

    Article  Google Scholar 

  10. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

    Article  MathSciNet  Google Scholar 

  11. Yüksel ME, Borlu M. Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst. 2009;17(4):976–82.

    Article  Google Scholar 

  12. Barata C, Ruela M, Francisco M, Mendonça T, Marques JS. Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J. 2013;8(3):965–79.

    Article  Google Scholar 

  13. Zhou H, Schaefer G, Sadka AH, Celebi ME. Anisotropic mean shift based fuzzy c-means segmentation of dermoscopy images. IEEE J Select Top Signal Process. 2009;3(1):26–34.

    Article  Google Scholar 

  14. Castillejos H, Ponomaryov V, Nino-de-Rivera L, Golikov V. Wavelet transform fuzzy algorithms for dermoscopic image segmentation. Computat Math Methods Med 2012;2012.

  15. Castiello G, Castellano G, Fanelli AM. Neuro-fuzzy analysis of dermatological images. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), 2004;4: 3247–3252. IEEE

  16. Maeda J, Kawano A, Yamauchi S, Suzuki Y, Marçal A, Mendonça T. Perceptual image segmentation using fuzzy-based hierarchical algorithm and its application to dermoscopy images. In: 2008 IEEE Conference on Soft Computing in Industrial Applications, 2008;66–71. IEEE

  17. Arroyo JLG, Garcia-Zapirain B. Segmentation of skin lesions based on fuzzy classification of pixels and histogram thresholding. CoRR .2017. arXiv:1703.03888

  18. Ma L, Staunton RC. Analysis of the contour structural irregularity of skin lesions using wavelet decomposition. Pattern Recogn. 2013;46(1):98–106.

    Article  Google Scholar 

  19. Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph. 2009;33(2):148–53.

    Article  Google Scholar 

  20. Erkol B, Moss RH, Joe Stanley R, Stoecker WV, Hvatum E. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res Technol. 2005;11(1):17–26.

    Article  Google Scholar 

  21. Riaz F, Naeem S, Nawaz R, Coimbra M. Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images. IEEE J Biomed Health Inform. 2018;23(2):489–500.

    Article  Google Scholar 

  22. Rajinikanth V, Madhavaraja N, Satapathy SC, Fernandes SL. Otsu’s multi-thresholding and active contour snake model to segment dermoscopy images. J Med Imaging Health Inform. 2017;7(8):1837–40.

    Article  Google Scholar 

  23. Vasconcelos FFX, Medeiros AG, Peixoto SA, Rebouças Filho PP. Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. Cogn Syst Res 2019;55,44–59.

  24. Mondal B, Das N, Santosh K, Nasipuri M. Improved skin disease classification using generative adversarial network. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 2020;pp. 520–525. IEEE

  25. Maiti A, Chatterjee B, Santosh K. Skin cancer classification through quantized color features and generative adversarial network. Int J Ambient Comput Intell (IJACI). 2021;12(3):75–97.

    Article  Google Scholar 

  26. Brinker TJ, Hekler A, Utikal JS, Grabe N, Schadendorf D, Klode J, Berking C, Steeb T, Enk AH, von Kalle C. Skin cancer classification using convolutional neural networks: systematic review. J Med Internet Res. 2018;20(10):11936.

    Article  Google Scholar 

  27. Sultana NN, Puhan NB. Recent deep learning methods for melanoma detection: a review. In: International Conference on Mathematics and Computing, 2018;pp. 118–132. Springer

  28. Marka A, Carter JB, Toto E, Hassanpour S. Automated detection of nonmelanoma skin cancer using digital images: a systematic review. BMC Med Imaging. 2019;19(1):21.

    Article  Google Scholar 

  29. Munir K, Elahi H, Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. Cancers. 2019;11(9):1235.

    Article  Google Scholar 

  30. Ünver HM, Ayan E. Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics. 2019;9(3):72.

    Article  Google Scholar 

  31. Ghosh S, Bandyopadhyay A, Sahay S, Ghosh R, Kundu I, Santosh K. Colorectal histology tumor detection using ensemble deep neural network. Eng Appl Arti Intell. 2021;100:104202.

    Article  Google Scholar 

  32. Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors. 2018;18(2):556.

    Article  Google Scholar 

  33. Lin BS, Michael K, Kalra S, Tizhoosh HR. Skin lesion segmentation: U-nets versus clustering. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017;7. IEEE

  34. Ban AI, Tuse DA. Trapezoidal/triangular intuitionistic fuzzy numbers versus interval-valued trapezoidal/triangular fuzzy numbers and applications to multicriteria decision making methods. Notes Intuit Fuzzy Sets. 2014;20(2):43–51.

    MATH  Google Scholar 

  35. Aribarg T, Supratid S, Lursinsap C. Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell. 2012;37(3):357–76. https://doi.org/10.1007/s10489-011-0332-x.

    Article  Google Scholar 

  36. Dubey YK, Mushrif MM, Mitra K. Segmentation of brain mr images using rough set based intuitionistic fuzzy clustering. Biocybernet Biomed Eng. 2016;36(2):413–26.

    Article  Google Scholar 

  37. Namburu A, Samayamantula SK, Edara SR. Generalised rough intuitionistic fuzzy c-means for magnetic resonance brain image segmentation. IET Image Process. 2017;11(9):777–85.

    Article  Google Scholar 

  38. Chaira T. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set. Appl Soft Comput J. 2012;12(4):1259–66. https://doi.org/10.1016/j.asoc.2011.12.011.

    Article  Google Scholar 

  39. Huang H, Meng F, Zhou S, Jiang F, Manogaran G. Brain image segmentation based on fcm clustering algorithm and rough set. IEEE Access. 2019;7:12386–96. https://doi.org/10.1109/ACCESS.2019.2893063.

    Article  Google Scholar 

  40. Uma Rani R, Amsini P. Triangular intuitionistic fuzzy set for nuclei segmentation in digital cancer pathology. IOSR J Eng. 2018.

  41. Mondal SP, Goswami A, De Kumar S. Nonlinear triangular intuitionistic fuzzy number and its application in linear integral equation. Adv Fuzzy Syst. 2019;2019:1–14. https://doi.org/10.1155/2019/4142382.

    Article  MathSciNet  MATH  Google Scholar 

  42. Shaw AK, Roy TK. Trapezoidal intuitionistic fuzzy number with some arithmetic operations and its application on reliability evaluation. Int J Math Oper Res. 2012;5(1):55. https://doi.org/10.1504/ijmor.2013.050512.

    Article  MathSciNet  MATH  Google Scholar 

  43. Li DF. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput Math Appl. 2010;60(6):1557–70.

    MathSciNet  MATH  Google Scholar 

  44. Tilson L.V, Excell P.S, Green R.J. A generalisation of the fuzzy c-means clustering algorithm. In: International Geoscience and Remote Sensing Symposium, ’Remote Sensing: Moving Toward the 21st Century’., 1988;3:1783–1784. https://doi.org/10.1109/IGARSS.1988.569600

  45. Verma H, Agrawal R.K, Sharan A. An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl. Soft Comput. J. 2016;46. https://doi.org/10.1016/j.asoc.2015.12.022

  46. Codella N.C.F, Gutman D, Celebi M.E, Helba B, Marchetti M.a, Dusza S.W, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). Proceedings - International Symposium on Biomedical Imaging 2018-April, 2018;168–172. https://doi.org/10.1109/ISBI.2018.8363547

  47. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy sets Syst. 1986;20(1):87–96.

    Article  MathSciNet  MATH  Google Scholar 

  48. Mendonca T, Celebi M, Mendonca T, Marques J. Ph2: A public database for the analysis of dermoscopic images. Dermosc. Image Anal. 2015

  49. Codella N.C, Gutman D, Celebi M.E, Helba B, Marchetti M.A, Dusza S.W, Kalloo A, Liopyris K, Mishra N, Kittler H, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018;pp. 168–172. IEEE

  50. Tschandl P, Rosendahl C, Kittler H. The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018;5(1):1–9.

    Article  Google Scholar 

  51. Silva V.D. Finding dominant peaks and valleys of an image histogram 2020. https://www.mathworks.com/matlabcentral/fileexchange/31570-finding-dominant-peaks-and-valleys-of-an-image-histogram

  52. Chaira T. A rank ordered filter for medical image edge enhancement and detection using intuitionistic fuzzy set. Appl Soft Comput. 2012;12(4):1259–66.

    Article  Google Scholar 

  53. Verma H, Agrawal R, Sharan A. An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput. 2015;46:543–57.

    Article  Google Scholar 

  54. Pham DL. Spatial models for fuzzy clustering. Comput Vis Image Underst. 2001;84(2):285–97.

    Article  MATH  Google Scholar 

  55. Bezdek JC, Ehrlich R, Full W. Fcm: the fuzzy c-means clustering algorithm. Comput Geosci. 1984;10(2–3):191–203.

    Article  Google Scholar 

  56. Namburu A, Kumar Samay S, Edara SR. Soft fuzzy rough set-based mr brain image segmentation. Appl Soft Comput. 2017;54:456–66.

    Article  Google Scholar 

  57. Tou JT, Gonzalez RC. Pattern recognition. Reading: Addison-Wesley; 1974.

    MATH  Google Scholar 

  58. Maji P, Pal SK. Rfcm: a hybrid clustering algorithm using rough and fuzzy sets. Fund Inform. 2007;80(4):475–96.

    MathSciNet  MATH  Google Scholar 

  59. Garcia-Arroyo JL, Garcia-Zapirain B. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Comput Methods Prog Biomed. 2019;168:11–9.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Namburu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Applied Image Processing and Pattern Recognition” guest edited by KC Santosh.

The original online version of this article was revised: Due to incorrect affiliation of the second author. Now, it has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namburu, A., Mohan, S., Chakkaravarthy, S. et al. Skin Cancer Segmentation Based on Triangular Intuitionistic Fuzzy Sets. SN COMPUT. SCI. 4, 228 (2023). https://doi.org/10.1007/s42979-023-01701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-01701-8

Keywords

Navigation