Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Cervical Histopathology Image Clustering Approach Using Graph Based Features

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

To apply topological information to solve a cervical histopathology image clustering (CHIC) problem, a graph based unsupervised learning (GBUL) approach is proposed in this paper. First, the GBUL method applies color features and k-means clustering to carry out a first-stage “coarse” clustering. Then, a skeletonization based node generation (SBNG) approach is introduced to approximate the distribution of cervical cell nuclei. Thirdly, based on the SBNG nodes, multiple graphs are constructed. Next, graph features are extracted based on the constructed graphs. Finally, k-means clustering is used again for the second-stage clustering. In the experiment, a practical Hematoxylin–eosin staining cervical histopathology image dataset with 40 whole-slide imaging images is tested, obtaining a promising CHIC result and showing a huge potential in the cancer risk prediction field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alpaydin E. Introduction to machine learning. Cambridge: MIT Press; 2009.

    MATH  Google Scholar 

  2. Banu P, Azar A, Inbarani H. Fuzzy firefly clustering for tumour and cancer analysis. Int J Model Ident Control. 2017;27(2):92–103.

    Article  Google Scholar 

  3. Bora K, Chowdhury M, Mahanta L, Kundu M, Das A. Automated classification of pap smear images to detect cervical dysplasia. Comput Methods Progr Biomed. 2017;138:31–47.

    Article  Google Scholar 

  4. Chaudhuriand B, Rodenacker K, Burger G. Characterization and featuring of histological section images. Pattern Recogn Lett. 1988;7(4):245–52.

    Article  Google Scholar 

  5. Chuang K, Tzeng H, Chen S, Wu J, Chen T. Fuzzy \(c\)-means clustering with spatial information for image segmentation. Comput Med Imaging Graph. 2006;30(1):9–15.

    Article  Google Scholar 

  6. Cruz-Roa A, Xu J, Madabhushi A. A note on the stability and discriminability of graph-based features for classification problems in digital pathology. In: Proceedings of SPIE 9287; 2015. p. 928703.

  7. Gonzalez R, Woods E, Eddins S. Digital image processing using MATLAB. 2nd ed. New York: Prentice Hall; 2003.

    Google Scholar 

  8. Guillaud M, Cox D, Adler-Storthz K, Malpica A, Staerkel G, Matisic J, Niekerk D, Poulin N, Follen M, MacAulay C. Exploratory analysis of quantitative histopathology of cervical intraepithelial neoplasia: objectivity, reproducibility, malignancy-associated changes, and human papillomavirus. Cytom Part A J Int Soc Anal Cytol. 2004;60(1):81–9.

    Google Scholar 

  9. Guo P, Banerjee K, Stanley R, Long R, Antani S, Thoma G, Zuna R, Frazier S, Moss R, Stoecker W. Nuclei-based features for uterine cervical cancer histology image analysis with fusion-based classification. IEEE J Biomed Health Inform. 2016;20(6):1595–607.

    Article  Google Scholar 

  10. Hendry S, Salgado R, Gevaert T, et al. Assessing tumor infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: Part 2: Tils in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24(5):235–51.

    Article  Google Scholar 

  11. Kandemir M, Hamprecht F. Computer-aided diagnosis from weak supervision: a benchmarking study. Comput Med Imaging Graph. 2015;42:44–50.

    Article  Google Scholar 

  12. Keenan S, Diamond J, McCluggage W, Bharucha H, Thompson D, Bartels P, Hamilton P. An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN). J Pathol. 2000;192(3):351–62.

    Article  Google Scholar 

  13. Li C, Chen H, Li X, Xu N, Hu Z, Xue D, Qi S, Ma H, Zhang L, Sun H. A review for cervical histopathology image analysis using machine vision approaches. Artif Intell Rev. 2020;53(7):4821–62.

    Article  Google Scholar 

  14. Li C, Chen H, Xue D, Hu Z, Sun H, Zhang L, Ma H, Jiang T, Qi S, He L, Xu N. Weakly supervised cervical histopathological image classification using multilayer hidden conditional random fields. In: Proceedings of ITIB 2019; 2019. p. 209–221.

  15. Li C, Chen H, Zhang L, Xu N, Xue D, Hu Z, Ma H, Sun H. Cervical histopathology image classification using multilayer hidden conditional random fields and weakly supervised learning. IEEE Access. 2019;7(1):90378–97.

    Article  Google Scholar 

  16. Li C, D X, Kong F, Zhou X, Zhang J, Zhang H, Zhang L, Sun H. Transfer learning based classification of cervical cancer immunohistochemistry images. In: Proceedings of ISICDM 2019; 2019. p. 102–106.

  17. Li C, Hu Z, Chen H, Xue D, Xu N, Zhang Y, Li X, Wang Q, Ma H. Cervical histopathology image clustering using graph based unsupervised learning. In: Proceedings of ICMIC 2019; 2019. p. 141–152.

  18. Li C, Xue D, Kong F, Hu Z, Chen H, Yao Y, Sun H, Zhang L, Zhang J, Jiang T, Yuan J, Xu N. Cervical histopathology image classification using ensembled transfer learning. In: Proceedings of ITIB 2019; 2019. p. 26–37.

  19. Li C, Zhang J, Zhang H, Wang Q. Generative adversarial networks based classification research of poorly differentiated cervical cancer images. J Northeast Univ (Nat Sci). 2020;41(7):1054–61.

    Google Scholar 

  20. Li X, Li C, Kulwa F, Rahaman M, Zhao W, Wang X, Xue D, Yao Y, Cheng Y, Li J, Qi S, Jiang T. Foldover features for dynamic object behaviour description in microscopic videos. IEEE Access. 2020;8(1):114519–40.

    Article  Google Scholar 

  21. Rahman MM, Li C, Wu X, Yao Y, Hu Z, Jiang T, Li X, Qi S. A survey for cervical cytopathology image analysis using deep learning. IEEE Access. 2020;8(1):61687–710.

    Article  Google Scholar 

  22. Mariarputham E, Stephen A. Nominated texture based cervical cancer classification. Comput Math Methods Med. 2015;2015:586928. https://doi.org/10.1155/2015/586928.

    Article  MATH  Google Scholar 

  23. Miranda G, Barrera J, Soares E, et al. Structural analysis of histological images to aid diagnosis of cervical cancer. In: Proceedings of SIBGRAPI 2012; 2012. p. 316–23.

  24. Otali D, Fredenburgh J, Oelschlager D, et al. A standard tissue as a control for histochemical and immunohistochemical staining. Biotech Histochem. 2016;91(5):309–26.

    Article  Google Scholar 

  25. Park M, Jin J, Xu M, et al. Microscopic image segmentation based on color pixels classification. In: Proceedings of ICTMCS 2009; 2009. p. 53–59.

  26. Pelt G, Sandberg T, Morreau H, Gelderblom H, Krieken J, Tollenaar R, Mesker W. The tumour-stroma ratio in colon cancer: the biological role and its prognostic impact. Histopathology. 2018;73(2):197–206.

    Article  Google Scholar 

  27. Peng Y, Park M, Xu M, et al. Clustering nuclei using machine learning techniques. In: Proceedings of IEEE/ICME 2010; 2010. p. 52–57.

  28. Ramos-Vara J. Principles and methods of immunohistochemistry. In: Gautier J, editor. Drug safety evaluation. Berlin: Springer; 2011. p. 83–96.

    Chapter  Google Scholar 

  29. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (tils) in breast cancer: recommendations by an international tils working group 2014. Ann Oncol. 2014;26(2):259–71.

    Article  Google Scholar 

  30. Sheikhzadeh F, Ward R, Carraro A, Chen Z, Niekerk D, MacAulay C, Follen M, Lane P, Guillaud M. Confocal fluorescence microscopy for detection of cervical preneoplastic lesions. In: Proceedings of SPIE 9420; 2015. p. 942009.

  31. Siegel R, Miller K, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  Google Scholar 

  32. Sornapudi S. Nuclei segmentation of histology images based on deep learning and color quantization and analysis of real world pill images. Master theis in Missouri University of Science and Technology; 2017.

  33. Sornapudi S, Stanley R, Stoecker W, et al. Deep learning nuclei detection in digitized histology images by superpixels. J Pathol Inform. 2018;9:1–10.

    Article  Google Scholar 

  34. Sudbø J, Marcelpoil R, Reith A. Caveats: numerical requirements in graph theory based quantitation of tissue architecture. Anal Cell Pathol. 2000;21(2):59–69.

    Article  Google Scholar 

  35. Sukumarand P, Gnanamurthy R. Computer aided detection of cervical cancer using pap smear images based on adaptive neuro fuzzy inference system classifier. J Med Imaging Health Inform. 2016;6(2):312–9.

    Article  Google Scholar 

  36. Sun C, Li C, Zhang J, Kulwa Li X. Hierarchical conditional random field model for multi-object segmentation in gastric histopathology images. Electron Lett. 2020;56(15:750–3.

  37. Sun C, Li C, Zhang J, Rahaman M, Ai S, Chen H, Kulwa F, Li Y, Li X, Jiang T. Gastric histopathology image segmentation using a hierarchical conditional random field. Biocybern Biomed Eng. 2020;40(4):1535–55.

    Article  Google Scholar 

  38. Sun W, Tseng T, Zhang J, Qian W. Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph. 2017;57:4–9.

    Article  Google Scholar 

  39. Theodoridis S, Pikrakis A, Koutroumbas K, et al. Introduction to pattern recognition: a Matlab approach. New York: Academic Press; 2010.

    Google Scholar 

  40. Torre L, Bray F, Siegel R, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  Google Scholar 

  41. Wang X, Li S, Li J, Wang J. An adaptive and selective segmentation model based on local and global image information. Int J Model Ident Control. 2017;28(2):114–24.

    Article  Google Scholar 

  42. West D. Introduction to graph theory. Englewood Cliffs: Prentice Hall; 1996.

    MATH  Google Scholar 

  43. Weyn B, Tjalma W, Vermeylen P, Daele A, Marck M, Jacob W. Determination of tumour prognosis based on angiogenesis-related vascular patterns measured by fractal and syntactic structure analysis. Clin Oncol. 2004;16(4):307–16.

    Article  Google Scholar 

  44. Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell. 1993;15(11):1101–13.

    Article  Google Scholar 

  45. Xiao Y, Cao Y, Yu W, Tian J. Multi-level threshold selection based on artificial bee colony algorithm and maximum entropy for image segmentation. Int J Comput Appl Technol. 2012;43(4):343–50.

    Article  Google Scholar 

  46. Xue D, Zhou X, Li C, Yao Y, Rahaman M, Zhang J, Chen H, Sun H, Zhang J, Qi S. An application of transfer learning and ensemble learning techniques for cervical histopathology image classification. IEEE Access. 2020;8(1):104603–18.

    Article  Google Scholar 

  47. Zhang L, Kong H, Chin C, Liu S, Chen Z, Wang T, Chen S. Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts. Comput Med Imaging Graph. 2014;38(5):369–80.

    Article  Google Scholar 

  48. Zhang L, Kong H, Liu S, Wang T, Chen S, Sonka M. Graph-based segmentation of abnormal nuclei in cervical cytology. Comput Med Imaging Graph. 2017;56:38–48.

    Article  Google Scholar 

  49. Zhou X, Li C, Rahaman M, Yao Y, Ai S, Sun C, Wang Q, Zhang Y, Li M, Li X, Jiang T, Xue D, Qi S, Teng Y. A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access. 2020;8(1):90931–56.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zhijie Hu, due to his contribution is considered as important as the first author in this paper. We also thank Miss Zixian Li, Mr. Guoxian Li and B.Sc. Muhammad Mamunur Rahaman from the MIaMIA Group for their important discussion and proofreading, respectively.

Funding

This work is supported by the “National Natural Science Foundation of China” (no. 61806047) and the “Fundamental Research Funds for the Central Universities” (no. N2019003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Computational Biology and Biomedical Informatics” guest edited by Dhruba Kr Bhattacharyya, Sushmita Mitra and Jugal Kr Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hu, Z., Chen, H. et al. A Cervical Histopathology Image Clustering Approach Using Graph Based Features. SN COMPUT. SCI. 2, 66 (2021). https://doi.org/10.1007/s42979-021-00469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-021-00469-z

Keywords

Navigation