Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A scientometric review of biochar preparation research from 2006 to 2019

  • Review
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

Biochar is the carbon-rich product obtained from the thermochemical conversion of biomass under oxygen-limited conditions. Preparation methods contribute to biochar properties, which are widely concerned in the agronomic and environmental benefits of agro-ecosystems. This research aims to use bibliometrics methods to comprehensively and objectively analyze the research trends in the global biochar production field from 2006 to 2019 based on the Web of Science Core Collection database. The results showed that 1434 papers related to biochar preparation were published, which gradually increased each year. The research topics were diversified, which were mainly divided into “Environmental Sciences and Ecology,” “Engineering” and “Agriculture”. Moreover, Bioresource Technology was the most published journal contained biochar preparation. Authors from China had the most publications, followed by the US, Australia and the UK. Meanwhile, Yong Sik Ok from Korea University contributed most of the publications and had the highest H-index. Keywords analysis indicated that biochar preparation by pyrolysis was a current hotspot, of which microwave and hydrothermal were a future research trend. Besides, gasification would be used to develop new biomass energy. Biochar has the characteristics of high pH, high specific surface area, high carbon content, and rich functional groups. It is mainly used in soil improvement, water pollutant adsorption, carbon sequestration and emission reduction, and energy storage materials, etc. Furthermore, raw materials, pyrolysis temperature and pyrolysis time will also affect its characteristics and applications. It is expected that this study may provide insight into the future research interests regarding biochar preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtar A, Jiricek I, Ivanova T, Mehrabadi A, Krepl V (2019) Carbon conversion and stabilisation of date palm and high rate algal pond (microalgae) biomass through slow pyrolysis. Int J Energy Res 43(9):4403–4416

    Article  CAS  Google Scholar 

  • Azzaz AA, Khiari B, Jellali S et al (2020) Hydrochars production, characterization and application for wastewater treatment: A review. Renew Sustain Energy Rev 127:109882

    Article  CAS  Google Scholar 

  • Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. Biocal concept version, Energy Research Centre of the Netherlands Report

  • Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Progress Sustain Energy 28(3):386–396

    Article  CAS  Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  CAS  Google Scholar 

  • Brownsort PA (2009) Biomass pyrolysis processes performance parameters and their influence on biochar system benefits. University of Edinburgh, Edinburgh

    Google Scholar 

  • Carter S, Shackley S, Sohi S, Suy T, Haefele S (2013) The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2):404–418

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45(8):629–634

    Article  CAS  Google Scholar 

  • Chen WF, Meng J, Han XR, Lan Y, Zhang WM (2019) Past, present, and future of biochar. Biochar 1(1):75–87

    Article  Google Scholar 

  • Chintala R, Mollinedo J, Schumacher TE, Malo DD, Julson J (2014) Effect of biochar on chemical properties of acidic soil. Arch Agronomy Soil Sci 60(3):393–404

    Article  CAS  Google Scholar 

  • Choi J, Yi S, Lee KC (2011) Analysis of keyword networks in MIS research and implications for predicting knowledge evolution.  Inf Manag 48(8):371–381

    Article  Google Scholar 

  • Deal C, Brewer CE, Brown RC, Okure MAE, Amoding A (2012) Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenerg 37:161–168

    Article  CAS  Google Scholar 

  • Edeh IG, Mašek O, Buss W (2020) A meta- analysis on biochar’s effects on soil water properties—New insights and future research challenges.  Sci Total Environ 714:136857

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2013) FAO Statistical Yearbook. Food and Agriculture Organization of the United Nations

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Hongyuan D (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr Ecosyst Environ 206(1):46–59

    Article  CAS  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2012) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Bioref 3(2):113–126

    Article  CAS  Google Scholar 

  • Huang H, Wang YX, Tang JC, Zhu WY (2014) Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene. Environ Sci 35(5):1884

    CAS  Google Scholar 

  • Huang YF, Cheng PH, Chiueh PT et al (2017) Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency. Appl Energy 204:1018–1025

    Article  Google Scholar 

  • Jin Q, Wang Z, Feng Y et al (2020) Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res 186:109442

    Article  CAS  Google Scholar 

  • Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  CAS  Google Scholar 

  • Kang C, Zhu L, Wang Y, Wang Y, Xiao K, Tian T (2018) Adsorption of basic dyes using walnut shell-based biochar produced by hydrothermal carbonization. Chem Res Chin Univ 34(4):622–627

    Article  CAS  Google Scholar 

  • Kaudal BB, Aponte C, Brodie G (2018) Biochar from biosolids microwaved-pyrolysis: Characteristics and potential for use as growing media amendment. J Anal Appl Pyrolysis 130:181–189

    Article  CAS  Google Scholar 

  • Kong S-H, Loh SK, Bachmann RT, Zainal H, Cheong KV (2019) Palm kernel shell biochar production, characteristics and carbon sequestration potential. J Oil Palm Res 31(3):508–520

    CAS  Google Scholar 

  • Kwak J-H, Islam MS, Wang S et al (2019) Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 231:393–404

    Article  CAS  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Bioref-Biofpr 3(5):547–562

    Article  CAS  Google Scholar 

  • Li J, Dai J, Liu G et al (2016) Biochar from microwave pyrolysis of biomass: a review. Biomass Bioenerg 94:228–244

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Rui X et al (2017) Sources of atmospheric pollution: a bibliometric analysis. Scientometrics 112(2):1025–1045

    Article  Google Scholar 

  • Li D, Zhao R, Peng X, Ma Z, Zhao Y, Gong T, Sun M, Jiao Y, Yang T, Xi B (2020) Biochar-related studies from 1999 to 2018: a bibliometrics-based review. Environ Sci Pollut Res 27 (3):2898-2908

    Article  Google Scholar 

  • Lian F, Huang F, Chen W, Xing BS, Zhu LY (2011) Sorption of apolar and polar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Environ Pollut 159(4):850

    Article  CAS  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2014) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2 (1):71–106

    Article  Google Scholar 

  • Liu Z, Balasubramanian R (2014) Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): A comparative evaluation. Appl Energy 114:857–864

    Article  CAS  Google Scholar 

  • Liu H, Hong R, Xiang C, Lv C, Li H (2020) Visualization and analysis of mapping knowledge domains for spontaneous combustion studies. Fuel 262:116598

    Article  CAS  Google Scholar 

  • Lu H, Hu L, Zheng W, Yao S, Qian L (2020) Impact of household land endowment and environmental cognition on the willingness to implement straw incorporation in China. J Clean Prod 262:121479

    Article  Google Scholar 

  • Luque R, Menendez JA, Arenillas A, Cot J (2012) Microwave-assisted pyrolysis of biomass feedstocks: The way forward? Energy Environ Sci 5(2):5481–5488

    Article  CAS  Google Scholar 

  • Machado LMM, Lutke SF, Perondi D et al (2020) Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag 113:96–104

    Article  CAS  Google Scholar 

  • Manya JJ, Azuara M, Manso JA (2018) Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions. Biomass Bioenergy 117:115–123

    Article  CAS  Google Scholar 

  • Masek O, Budarin V, Gronnow M et al (2013) Microwave and slow pyrolysis biochar—comparison of physical and functional properties. J Anal Appl Pyrolysis 100:41–48

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  • Md Khudzari J, Kurian J, Tartakovsky B, Raghavan GSV (2018) Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem Eng J 136:51–60

    Article  CAS  Google Scholar 

  • Mohamed BA, Ellis N, Kim CS, Bi X, Emam AE (2016) Engineered biochar from microwave- assisted catalytic pyrolysis of switchgrass for increasing water- holding capacity and fertility of sandy soil. Sci Total Environ 566:387–397

    Article  CAS  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Biores Technol 160:191–202

    Article  CAS  Google Scholar 

  • Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Biores Technol 102(19):9255–9260

    Article  CAS  Google Scholar 

  • Nam WL, Phang XY, Su MH, Liew RK, Ma NL, Bin Rosli MHN, Lam SS (2018) Production of bio- fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Sci Total Environ 624:9–16

    Article  CAS  Google Scholar 

  • Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88(5):523–531

    Article  CAS  Google Scholar 

  • Onay O, Kockar OM (2003) Slow, fast and flash pyrolysis of rapeseed. Renew Energy 28(15):2417–2433

    Article  CAS  Google Scholar 

  • Padilla FM, Gallardo M, Manzano-Agugliaro F (2018) Global trends in nitrate leaching research in the 1960–2017 period. Sci Total Environ 643:400–413

    Article  CAS  Google Scholar 

  • Pahla G, Ntuli F, Muzenda E (2018) Torrefaction of landfill food waste for possible application in biomass co-firing. Waste Manag 71:512–520

    Article  CAS  Google Scholar 

  • Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Biores Technol 161:255–262

    Article  CAS  Google Scholar 

  • Panahi HKS, Dehhaghi M, Ok YS et al (2020) A comprehensive review of engineered biochar: production, characteristics, and environmental applications. J Clean Prod 270:122462

    Article  CAS  Google Scholar 

  • Patel S, Kundu S, Halder P, Ratnnayake N, Marzbali MH, Aktar S, Selezneva E, Paz-Ferreiro J, Surapaneni A, Célio de Figueiredo C, Sharma A, Megharaj M, Shah K (2020) A critical literature review on biosolids to biochar: an alternative biosolids management option. Rev Environ Sci Bio/Technol 19(4):807–841

    Article  Google Scholar 

  • Pimchuai A, Dutta A, Basu P (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24(9):4638–4645

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Zhang M et al (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308

    Article  CAS  Google Scholar 

  • Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Global Change Biol Bioenergy 5(2):104–115

    Article  CAS  Google Scholar 

  • Rousset P, Macedo L, Commandre JM, Moreira A (2012) Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrol 96:86–91

    Article  CAS  Google Scholar 

  • Salam A, Bashir S, Khan I, Hu H (2020) Biochar production and characterization as a measure for effective rapeseed residue and rice straw management: an integrated spectroscopic examination. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00820-z

    Article  Google Scholar 

  • Santos LER, Meili L, Soletti JI, de Carvalho SHV, Ribeiro LMO, Duarte JLS, Santos R (2020) Impact of temperature on vacuum pyrolysis of Syagrus coronata for biochar production. J Mater Cycles Waste Manag 22(3):878–886

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4(5):1765–1771

    Article  CAS  Google Scholar 

  • Shackley S, Carter S, Knowles T, et al (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58

    Article  CAS  Google Scholar 

  • Shaheen SM, Niazi NK, Hassan NEE, Bibi I, Wang HL, Tsang DCW, Rinklebe J (2019) Wood- based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64:216–247

    Article  CAS  Google Scholar 

  • Singh SV, Chaturvedi S, Dhyani VC, Kasivelu G (2020) Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite. Bioresour Technol 314:123674

    Article  CAS  Google Scholar 

  • Tomczyk A, Sokolowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio-Technol 19(1):191–215

    Article  CAS  Google Scholar 

  • Tu R, Jiang E, Sun Y, Xu X, Rao S (2018) The pelletization and combustion properties of torrefied Camellia shell via dry and hydrothermal torrefaction: A comparative evaluation. Biores Technol 264:78–89

    Article  CAS  Google Scholar 

  • Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. Int J Energy Res 35(10):835–862

    Article  CAS  Google Scholar 

  • Wang H (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197(9):356–362

    Article  CAS  Google Scholar 

  • Wang Y, Yin R, Liu R (2014) Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrol 110:375–381

    Article  CAS  Google Scholar 

  • Wang D, Jiang PK, Zhang HB et al (2020a) Biochar production and applications in agro and forestry systems: a review. Sci Total Environ 723:137775

    Article  CAS  Google Scholar 

  • Wang L, Ok YS, Tsang DCW et al (2020b) New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag 36(3):358–386

    Article  Google Scholar 

  • Wu P, Ata-Ul-Karim ST, Singh BP et al (2019) A scientometric review of biochar research in the past 20 years (1998–2018). Biochar 1(1):23–43

    Article  Google Scholar 

  • Xing GX, Zhu ZL (2000) An assessment of N loss from agricultural fields to the environment in China. Nutr Cycl Agroecosyst 57(1):67–73

    Article  Google Scholar 

  • Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Progress Sustain Energy 28(3):435–440

    Article  CAS  Google Scholar 

  • Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vasquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 24(9):4738–4742

    Article  CAS  Google Scholar 

  • Yang G, Sun Y, Zhang JP, Wen C (2016) Fast carbonization using fluidized bed for biochar production from reed black liquor: optimization for H2S removal. Environ Technol 37(19):2447–2456

    Article  CAS  Google Scholar 

  • Yang X, Zhang SQ, Ju MT et al (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci 9(7):1365

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Yuan H, Lu T, Zhao D, Huang H, Noriyuki K, Chen Y (2013) Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J Mater Cycles Waste Manag 15(3):357–361

    Article  CAS  Google Scholar 

  • Zhang CY, Ho SH, Chen WH et al (2018) Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl Energy 220:598–604

    Article  CAS  Google Scholar 

  • Zhang ZK, Zhu ZY, Shen BX, Liu L (2019) Insights into biochar and hydrochar production and applications: a review. Energy 171:581–598

    Article  CAS  Google Scholar 

  • Zornoza R, Moreno-Barriga E, Acosta JA, Munoz MA, Faz A (2016) Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144:122–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is funded by National Key Research and Development Program of China (No. 2018YFC1900904) and Postgraduate Research Fund of Guizhou Province (No. YJSCXJH(2019)055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxue Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Li, D., Wang, M. et al. A scientometric review of biochar preparation research from 2006 to 2019. Biochar 3, 283–298 (2021). https://doi.org/10.1007/s42773-021-00091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-021-00091-5

Keywords

Navigation