Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Atomistic simulation of low-dimensional nanostructures toward extreme-scale supercomputing

  • Regular Paper
  • Published:
CCF Transactions on High Performance Computing Aims and scope Submit manuscript

Abstract

Large-scale atomistic simulation of low-dimensional silicon nanostructures has been implemented on a heterogeneous supercomputer equipped with a large number of GPU-like accelerators (GLA). In the simulation, an innovative parallel algorithm was developed for the combined utilization of the dynamic neighbor and static neighbor list algorithms aiming at the different regions of the nanostructures. Furthermore, some optimization techniques were performed for the computationally intensive many-body force evaluation between atoms, such as SIMD vectorization, manual loop unrolling, pre-calculation of memory addresses and reordering of data structure etc. Finally, the simulation achieved the excellent weak and strong scalabilities in the parallel implementation, where up to 805.3 billion silicon atoms were simulated. This development suggests an exciting future of predicting the thermodynamic properties of low-dimensional nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen, M.P., Tidesley, D.J.: Computer simulation of liquids. Oxford University Press, Oxford (1987)

    Google Scholar 

  • Bao, H., Chen, J., Gu, X., Cao, B.: A review of simulation methods in micro/nanoscale heat conduction. ES Energy Environ. 1, 16–55 (2018)

    Google Scholar 

  • Boukai, A.I., et al.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  Google Scholar 

  • Chantrenne, P., Barrat, J.: Finite size effects in determination of thermal conductivities: comparing molecular dynamics results with simple models. J. Heat Trans. 126, 577–585 (2004)

    Article  Google Scholar 

  • Cruz, C., Termentzidis, K., Chantrenne, P., Kleber, X.: Molecular dynamics simulation for the prediction of thermal conductivity of bulk silicon and silicon nanowires: influence of interatomic potentials and boundary conditions. J. Appl. Phys. 110, 034309 (2011)

    Article  Google Scholar 

  • Duan, X., Gao, P., Zhang, T., Zhang, M., Liu, W., Zhang, W., Xue, W., Fu, H., Gan, L., Chen, D., Meng, X., Yang, G.: Redesigning LAMMPS for peta-scale and hundred-billion-atom simulation on Sunway TaihuLight, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 148–159 (2018)

  • Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., Yang, G.: The Sunway TaihuLight supercomputer: system and applications. Sci. China 59, 072001 (2016)

    Google Scholar 

  • Glaser, J., Nguyen, T.D., Anderson, J.A., Lui, P., Spiga, F., Millan, J.A., Morse, D.C., Glotzer, S.C.: Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 192, 97–107 (2015)

    Article  Google Scholar 

  • Green, M.A.: Solar cells: operating principles, technology, and system applications. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  • He, Y., Galli, G.: Microscopic origin of the reduced thermal conductivity of silicon nanowires. Phys. Rev. Lett. 108, 215901 (2012)

    Article  Google Scholar 

  • Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  Google Scholar 

  • Hou, C.F., Xu, J., Wang, P., Huang, W.L., Wang, X.W.: Efficient GPU-accelerated molecular dynamics simulation of solid covalent crystals. Comput. Phys. Commun. 184(5), 1364–1371 (2013a)

    Article  Google Scholar 

  • Hou, C.F., Xu, J., Wang, P., Huang, W.L., Wang, X.W., Ge, W., He, X.F., Guo, L., Li, J.H.: Petascale molecular dynamics simulation of crystalline silicon on Tianhe-1A. Int. J. High Perform. C. 27(3), 307–317 (2013b)

    Article  Google Scholar 

  • Hou, C.F., Xu, J., Ge, W., Li, J.H.: Molecular dynamics simulation overcoming the finite size effects of thyermal conductivity of bulk silicon and silicon nanowires. Model. Simul. Mater. Sci. Eng. 24(4), 45005–45013 (2016)

    Article  Google Scholar 

  • Hou, C.F., Zhang, C., Ge, W., Wang, L., Han, L., Pang, J.: Record Atomistic simulation of crystalline silicon: bridging microscale structures and macroscale properties. J. Comput. Chem. 41, 731–738 (2020)

    Article  Google Scholar 

  • Hou, C., Zhu, A., Zhang, S., Zhao, M., Ye, Y., Xu, J., Ge, W.: Atomistic simulation toward real-scale microprocessor circuits. Chem. Phys. Lett. 791, 139389 (2022)

    Article  Google Scholar 

  • https://docs.nvidia.com/cuda/profiler-users-guide/index.html. Accessed 27 Oct 2021

  • https://top500.org/system/176899/. Accessed 27 Oct 2021

  • https://www.top500.org/lists/2016/06/. Accessed 27 Oct 2021

  • https://www.top500.org/lists/top500/2010/11/highlights/. Accessed 27 Oct 2021

  • Lee, J., et al.: Thermal transport in silicon nanowires at high temperature up to 700 K. Nano Lett. 16, 4133–4140 (2016)

    Article  Google Scholar 

  • Li, D., Wu, Y., Kim, P., Shi, L., Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowire. Appl. Phys. Lett. 83(14), 2934–2936 (2003)

    Article  Google Scholar 

  • Narumi, T., Ohno, Y., Okimoto, N., Koishi, T., Suenaga, A., Futatsugi, N., Yanai, R., Himeno, R., Fujikawa, S., Taiji, M., Ikei, M.: A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3, SC'06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing. IEEE, (2006)

  • Neogi, S., Donadio, D.: Thermal transport in free-standing silicon membrane: influence of dimensional reduction and surface nanostructures. Eur. Phys. J. B 88, 73 (2015)

    Article  Google Scholar 

  • Pascual-Gutierrez, J.A., Murthy, J.Y., Viskanta, R.: Limits of size confinement in silicon thin films and wires. J. Appl. Phys. 102, 8 (2007)

    Article  Google Scholar 

  • Phillips, J. C., Zheng, G., Kumar, S., Kale, L. V.: NAMD: Biomolecular simulation on thousands of processors, SC'02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing. IEEE, 36–36 (2002)

  • Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  • Rapaport, A.: The art of molecular dynamics simulation. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Sellan, D.P., et al.: Size effects in molecular dynamics thermal conductivity predictions. Phys. Rev. B 81, 214305 (2010)

    Article  Google Scholar 

  • Shaw, D. E. et al.: Anton 2: raising the bar for performance and programmability in a specialpurpose molecular dynamics supercomputer. In Supercopmuting Conference’14, 41–53 (2014)

  • Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5270 (1985)

    Article  Google Scholar 

  • Streitz, FH., Glosli, JN., Patel, MV., Chan, B., Yates, RK., de Supinski, BR.: 100+ TFlop solidification simulations on BlueGene/L, SC'05: Proceedings of the 2006 ACM/IEEE conference on Supercomputing. IEEE, (2005)

  • Sun, L., Murthy, J.Y.: Domain size effects in molecular dynamics simulation of phonon transport in silicon. Appl. Phys. Lett. 89, 171919 (2006)

    Article  Google Scholar 

  • Swaminarayan, S., Kadau, K., Germann, T. C., Fossum, G. C.: 369 Tflop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer, SC'08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE, 1–10 (2008)

  • Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(14), 6991–7000 (1988a)

    Article  Google Scholar 

  • Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 38(14), 9902–9905 (1988b)

    Article  Google Scholar 

  • Wang, Z., Ruan, X.: On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulation. J. Appl. Phys. 121, 044301 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Beijing Natural Science Foundation under grant No. JQ21034, the Major Research Program of Henan Province under grant No. 201400211300, the National Natural Science Foundation of China (NSFC) under grant Nos. 21776280, 22073103 and 91934302, and the Strategic Priority Research Program of Chinese Academy of Sciences under grant No. XDC01040100. The authors are also grateful to the Computer Network and Information Center of Chinese Academy of Sciences and the National Supercomputing Center of China at Zhengzhou for their valuable help in computational resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Hou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Zhu, A., Zhang, S. et al. Atomistic simulation of low-dimensional nanostructures toward extreme-scale supercomputing. CCF Trans. HPC 5, 3–11 (2023). https://doi.org/10.1007/s42514-022-00115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42514-022-00115-x

Keywords

Navigation