Abstract
A method for analyzing the feature map for the kernel-based quantum classifier is developed; that is, we give a general formula for computing a lower bound of the exact training accuracy, which helps us to see whether the selected feature map is suitable for linearly separating the dataset. We show a proof of concept demonstration of this method for a class of 2-qubit classifier, with several 2-dimensional datasets. Also, a synthesis method, which combines different kernels to construct a better-performing feature map in a lager feature space, is presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd Edition. Springer series in statistics Springer
Alpaydin E (2016) Machine learning: the new AI. MIT press essential knowledge. MIT press, cambridge MA
Boser BE, Guyon IM (1992) Vapnik, VN. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, vol 5, pp 144–152
Rebentrost P, Mohseni M, Lloyd S (2014) Quantum support vector machine for big data classification. Phys. Rev. Lett. 130503:113
Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum circuit learning. Phys. Rev. A 032309:98
Farhi E, Neven H (2018) Classification with quantum neural networks on near term processors. arXiv:1802.06002
Zhuang Q, Zhang Z (2019) Supervised learning enhanced by an entangled sensor network. arXiv:1901.09566
Wilson CM, Otterbach JS, Tezak N, Smith RS, Crooks GE, da Silva MP (2018) Quantum kitchen sinks: an algorithm for machine learning on near-term quantum computers. arXiv:1806.08321
Chatterjee R, Yu T (2017) Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf Commun 17:1292
Bishwas AK, Mani A, Palade V (2018) An all-pair quantum SVM approach for big data multiclass classification. Quantum Inf Process 17(10):282
Li T, Chakrabarti S, Wu X (2019) Sublinear quantum algorithms for training linear and kernel-based classifiers. In: Proceedings of the 36th International Conference on Machine Learning (ICML 2019), vol. PMLR 97, pp. 3815–3824
Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM (2019) Supervised learning with quantum-enhanced feature spaces. Nature 567(7747):209
Schuld M, Killoran N (2019) Quantum machine learning in feature Hilbert spaces. Phys Rev Lett 040504:122
Bartkiewicz K, Gneiting C, Černoch A, Jiráková K, Lemr K, Nori F (2019) Experimental kernel-based quantum machine learning in finite feature space. arXiv:1906.04137v1
Blank C, Park DK, Rhee JKK, Petruccione F (2019) Quantum classifier with tailored quantum kernel. arXiv:1909.02611
Kusumoto T, Mitarai K, Fujii K, Kitagawa M, Negoro M (2019) Experimental quantum kernel machine learning with nuclear spins in a solid. arXiv:1911.12021
Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum embeddings for machine learning. arXiv:2001.03622
LaRose R, Coyle B (2020) Robust data encodings for quantum classifiers. arXiv:2003.01695
Aronoff S (1985) The minimum accuracy value as an index of classification accuracy. Photogrammetric Engineering and Remote Sensing 51(1):99–111
Aleksandrowicz G, Alexander T, Barkoutsos P, Bello L, Ben-Haim Y, Bucher D, Cabrera-Hernández FJ, Carballo-Franquis J, Chen A, Chen CF, Chow JM, Córcoles-Gonzales AD, Cross AJ, Cross A, Cruz-Benito J, Culver C, González SDLP, Torre EDL, Ding D, Dumitrescu E, Duran I, Eendebak P, Everitt M, Sertage IF, Frisch A, Fuhrer A, Gambetta J, Gago BG, Gomez-Mosquera J, Greenberg D, Hamamura I, Havlicek V, Hellmers J, Herok Ł, Horii H, Hu S, Imamichi T, Itoko T, Javadi-Abhari A, Kanazawa N, Karazeev A, Krsulich K, Liu P, Luh Y, Maeng Y, Marques M, Martín-Fernández FJ, McClure DT, McKay D, Meesala S, Mezzacapo A, Moll N, Rodríguez DM, Nannicini G, Nation P, Ollitrault P, O’Riordan LJ, Paik H, Pérez J, Phan A, Pistoia M, Prutyanov V, Reuter M, Rice J, Davila AR, Rudy RHP, Ryu M, Sathaye N, Schnabel C, Schoute E, Setia K, Shi Y, Silva A, Siraichi Y, Sivarajah S, Smolin JA, Soeken M, Takahashi H, Tavernelli I, Taylor C, Taylour P, Trabing K, Treinish M, Turner W, Vogt-Lee D, Vuillot C, Wildstrom JA, Wilson J, Winston E, Wood C, Wood S, Wörner S, Akhalwaya IY, Zoufal C (2019) Qiskit: an open-source framework for quantum computing
Bishop CM (2006) Pattern recognition and machine learning information science andstatistics. Springer-Verlag New York, Inc., Secaucus NJ
Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach learn res 5:27–72
Dioş L, Oltean M, Rogozan A, Pecuchet JP (2007) Improving SVM performance using a linear combination of kernels. In: International Conference on Adaptive and Natural Computing Algorithms, pp. 218–227. Springer, Berlin, Heidelberg
Dietterich TG (2000) Ensemble methods in machine learning. In: International workshop on multiple classifier systems, pp. 1–15. Springer, Berlin, Heidelberg
Schuld M, Petruccione F (2018) Quantum ensembles of quantum classifiers. Scientific reports 8(1):2772
Wang X, Ma Y, Hsieh MH, Yung M (2019) Quantum speedup in adaptive boosting of binary classification. arXiv:1902.00869
Ambainis A, Nayak A, Ta-shma A, Vazirani U (2002) Dense quantum coding and a lower bound for 1-way quantum automata. J. ACM 49:496–511
Iwama K, Nishimura H, Raymond R, Yamashita S (2007) Unbounded-error one-way classical and quantum communication complexity, Automata, languages and programming lecture notes in computer science, vol 4596. Springer, Berlin, Heidelberg
Funding
This work was supported by MEXT Quantum Leap Flagship Program Grant Number JPMXS0118067285 and Cabinet Office PRISM.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Y. Suzuki, H. Yano: Equally contributing authors.
Rights and permissions
About this article
Cite this article
Suzuki, Y., Yano, H., Gao, Q. et al. Analysis and synthesis of feature map for kernel-based quantum classifier. Quantum Mach. Intell. 2, 9 (2020). https://doi.org/10.1007/s42484-020-00020-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42484-020-00020-y