Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Spatiotemporal dynamics and underlying mechanisms of ecosystem respiration in rubber plantations: a case study in Hainan Island

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Rubber plantations are an important component of tropical forest ecosystems and are emerging as crucial contributors to carbon sequestration in the tropics. However, ecosystem respiration (RECO), which constitutes an essential constraint on the carbon fixation capacity of rubber plantations, and its driving mechanisms remains unclear. Therefore, this study developed a data-driven semi-empirical model to simulate rubber plantations RECO utilising eddy covariance flux measurements and was upscaled to Hainan Island using remote sensing images and climatic data. Numerical simulations experiments analysed direct and indirect of climatic factors impacts on rubber plantations RECO. The results showed that the model accurately captured RECO trends and seasonality (R2 = 0.87, RMSE = 1.27 g C m−2 d−1); in the past 19 years, RECO showed a noticeable increase, particularly in the late rainy season and the seasonality of RECO has shown a delayed pattern. The RECO in the central region (52% area) exhibited multimodal enhancement while northern and southern regions (37% area) showed oscillations or decreases. Temporally, RECO is higher in the rainy season compared to the dry season, and spatially, RECO is higher in the southern region than in the northern region. Among the climatic factors, water conditions (rainfall and air humidity) have been emerged as dominant factors (5.38%) influencing RECO, surpassing temperature (3.96%) and radiation (3.81%). In addition, climatic factors make a positive overall contribution during the dry season but perform oppositely in the rainy season. This study offers theoretical and technical insights into high carbon sink management in rubber plantations and carbon sequestration in tropical forests ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75. https://doi.org/10.1111/j.1365-2745.2011.01916.x

    Article  CAS  Google Scholar 

  2. Caballero Espejo J, Messinger M, Román-Dañobeytia F, Ascorra C, Fernandez LE, Silman M (2018) Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sens 10:1903. https://doi.org/10.3390/rs10121903

    Article  Google Scholar 

  3. Chiarucci A, Piovesan G (2020) Need for a global map of forest naturalness for a sustainable future. Conserv Biol 34:368–372. https://doi.org/10.1111/cobi.13408

    Article  PubMed  Google Scholar 

  4. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. https://doi.org/10.1007/s10021-005-0105-7

    Article  CAS  Google Scholar 

  5. Tramontana G, Migliavacca M, Jung M, Reichstein M, Keenan TF, Camps-Valls G, Ogee J, Verrelst J, Papale D (2020) Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Glob Change Biol 26:5235–5253. https://doi.org/10.1111/gcb.15203

    Article  Google Scholar 

  6. Zhu X, He H, Ma M, Ren X, Zhang L, Zhang F, Li Y, Shi P, Chen S, Wang Y (2020) Estimating ecosystem respiration in the grasslands of northern China using machine learning: Model evaluation and comparison. Sustainability 12:2099. https://doi.org/10.3390/su12052099

    Article  Google Scholar 

  7. Biasi C, Jokinen S, Marushchak ME, Hämäläinen K, Trubnikova T, Oinonen M, Martikainen PJ (2014) Microbial respiration in Arctic upland and peat soils as a source of atmospheric carbon dioxide. Ecosystems 17:112–126. https://doi.org/10.1007/s10021-013-9710-z

    Article  CAS  Google Scholar 

  8. Bunce JA (1994) Responses of respiration to increasing atmospheric carbon dioxide concentrations. Physiol Plant 90:427–430. https://doi.org/10.1111/j.1399-3054.1994.tb00409.x

    Article  CAS  Google Scholar 

  9. Speckman HN, Frank JM, Bradford JB, Miles BL, Massman WJ, Parton WJ, Ryan MG (2015) Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Glob Change Biol 21:708–721. https://doi.org/10.1111/gcb.12731

    Article  Google Scholar 

  10. Matteucci M, Gruening C, Ballarin IG, Seufert G, Cescatti A (2015) Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biol Biochem 88:224–235. https://doi.org/10.1016/j.soilbio.2015.05.017

    Article  CAS  Google Scholar 

  11. Piao S, Luyssaert S, Ciais P, Janssens IA, Chen A, Cao C, Fang J, Friedlingstein P, Luo Y, Wang S (2010) Forest annual carbon cost: A global-scale analysis of autotrophic respiration. Ecology 91:652–661. https://doi.org/10.1890/08-2176.1

    Article  PubMed  Google Scholar 

  12. Gao Y, Yu G, Li S, Yan H, Zhu X, Wang Q, Shi P, Zhao L, Li Y, Zhang F (2015) A remote sensing model to estimate ecosystem respiration in Northern China and the Tibetan Plateau. Ecol Model 304:34–43. https://doi.org/10.1016/j.ecolmodel.2015.03.001

    Article  CAS  Google Scholar 

  13. Ma X, He P, Zeng Y, Ma J, Wu X (2022) A global-drive analysis of ecosystem respiration in the Arctic and Third Pole. Ecol Ind 145:109668. https://doi.org/10.1016/j.ecolind.2022.109668

    Article  Google Scholar 

  14. Chen N, Zhu J, Zhang Y, Liu Y, Li J, Zu J, Huang K (2019) Nonlinear response of ecosystem respiration to multiple levels of temperature increases. Ecol Evol 9:925–937. https://doi.org/10.1002/ece3.4658

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu S, Mo Q, Chen Y, Li Y, Li Y, Zou B, Xia H, Jun W, Li Z, Wang F (2020) Effects of seasonal precipitation change on soil respiration processes in a seasonally dry tropical forest. Ecol Evol 10:467–479. https://doi.org/10.1002/ece3.5912

    Article  PubMed  Google Scholar 

  16. Migliavacca M, Reichstein M, Richardson AD, Colombo R, Sutton MA, Lasslop G, Tomelleri E, Wohlfahrt G, Carvalhais N, Cescatti A (2011) Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob Change Biol 17:390–409. https://doi.org/10.1111/j.1365-2486.2010.02243.x

    Article  Google Scholar 

  17. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  18. Huang N, Wang L, Song X-P, Black TA, Jassal RS, Myneni RB, Wu C, Wang L, Song W, Ji D (2020) Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci Adv 6:eabb8508. https://doi.org/10.1126/sciadv.abb8508

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979. https://doi.org/10.1007/s10021-008-9172-x

    Article  Google Scholar 

  20. Chimner R, Welker J (2005) Ecosystem respiration responses to experimental manipulations of winter and summer precipitation in a Mixedgrass Prairie, WY, USA. Biogeochemistry 73:257–270. https://doi.org/10.1007/s10533-004-1989-6

    Article  Google Scholar 

  21. Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. https://doi.org/10.1007/s00442-004-1682-4

    Article  PubMed  Google Scholar 

  22. Verduzco VS, Garatuza-Payán J, Yépez EA, Watts CJ, Rodríguez JC, Robles-Morua A, Vivoni ER (2015) Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico. J Geophys Res Biogeosci 120:2081–2094. https://doi.org/10.1002/2015JG003119

    Article  Google Scholar 

  23. Afreen T, Singh H (2019) Does change in precipitation magnitude affect the soil respiration response? A study on constructed invaded and uninvaded tropical grassland ecosystem. Ecol Ind 102:84–94. https://doi.org/10.1016/j.ecolind.2019.02.022

    Article  CAS  Google Scholar 

  24. Taylor PG, Cleveland CC, Wieder WR, Sullivan BW, Doughty CE, Dobrowski SZ, Townsend AR (2017) Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol Lett 20:779–788. https://doi.org/10.1111/ele.12765

    Article  PubMed  Google Scholar 

  25. Liang L, Geng D, Yan J, Qiu S, Shi Y, Wang S, Wang L, Zhang L, Kang J (2022) Remote sensing estimation and spatiotemporal pattern analysis of terrestrial net ecosystem productivity in China. Remote Sens 14:1902. https://doi.org/10.3390/rs14081902

    Article  Google Scholar 

  26. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69. https://doi.org/10.1016/S0168-1923(00)00225-2

    Article  Google Scholar 

  27. Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MG, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612. https://doi.org/10.1029/98JD02647

    Article  CAS  Google Scholar 

  28. Baldocchi DD (2020) How eddy covariance flux measurements have contributed to our understanding of global change biology. Glob Change Biol 26:242–260. https://doi.org/10.1111/gcb.14807

    Article  Google Scholar 

  29. Ballantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J, Tans P, Shevliakova E, Pan Y, Poulter B, Anav A (2017) Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat Clim Chang 7:148–152. https://doi.org/10.1038/nclimate3204

    Article  CAS  Google Scholar 

  30. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. https://doi.org/10.1126/science.1184984

    Article  CAS  PubMed  Google Scholar 

  31. Xie X, Li A, Tan J, Jin H, Nan X, Zhang Z, Bian J, Lei G (2020) Assessments of gross primary productivity estimations with satellite data-driven models using eddy covariance observation sites over the northern hemisphere. Agric For Meteorol 280:107771. https://doi.org/10.1016/j.agrformet.2019.107771

    Article  Google Scholar 

  32. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841. https://doi.org/10.1029/93GB02725

    Article  Google Scholar 

  33. Wang J, Bao Q, Zeng N, Liu Y, Wu G, Ji D (2013) Earth System Model FGOALS-s2: coupling a dynamic global vegetation and terrestrial carbon model with the physical climate system model. Adv Atmos Sci 30:1549–1559. https://doi.org/10.1007/s00376-013-2169-1

    Article  CAS  Google Scholar 

  34. Fisher JB, Malhi Y, Bonal D, Da Rocha HR, De Araujo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H (2009) The land–atmosphere water flux in the tropics. Glob Change Biol 15:2694–2714. https://doi.org/10.1111/j.1365-2486.2008.01813.x

    Article  Google Scholar 

  35. Migliavacca M, Reichstein M, Richardson AD, Colombo R, Sutton MA, Lasslop G, Tomelleri E, Wohlfahrt G, Carvalhais N, Cescatti A, Mahecha MD, Montagnani L, Papale D, Zaehle S, Arain A, Arneth A, Black TA, Carrara A, Dore S, Gianelle D, Helfter C, Hollinger D, Kutsch WL, Lafleur PM, Nouvellon Y, Rebmann C, Da Rocha HR, Rodeghiero M, Roupsard O, SebastiÀ M-T, Seufert G, Soussana J-F, Van Der Molen MK (2011) Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob Change Biol 17:390–409. https://doi.org/10.1111/j.1365-2486.2010.02243.x

    Article  Google Scholar 

  36. Ai J, Jia G, Epstein HE, Wang H, Zhang A, Hu Y (2018) MODIS-based estimates of global terrestrial ecosystem respiration. J Geophys Res Biogeosci 123:326–352. https://doi.org/10.1002/2017JG004107

    Article  Google Scholar 

  37. Sánchez-Azofeifa GA, Castro-Esau KL, Kurz W, Joyce A (2009) Monitoring carbon stocks in the tropics and the remote sensing operational limitations: from local to regional projects. Ecol Appl 19:480–494. https://doi.org/10.1890/08-1149.1

    Article  PubMed  Google Scholar 

  38. Xia J, Wang J, Niu S (2020) Research challenges and opportunities for using big data in global change biology. Glob Change Biol 26:6040–6061. https://doi.org/10.1111/gcb.15317

    Article  Google Scholar 

  39. Zeng J, Matsunaga T, Tan ZH, Saigusa N, Shirai T, Tang Y, Peng S, Fukuda Y (2020) Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci Data 7:313. https://doi.org/10.1038/s41597-020-00653-5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huy B, Truong NQ, Khiem NQ, Poudel KP, Temesgen H (2022) Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. For Ecol Manage 508:120031. https://doi.org/10.1016/j.foreco.2022.120031

    Article  Google Scholar 

  41. Singh C, Karan SK, Sardar P, Samadder SR (2022) Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. J Environ Manage 308:114639. https://doi.org/10.1016/j.jenvman.2022.114639

    Article  PubMed  Google Scholar 

  42. Marín-Spiotta E, Sharma SJGE (2013) Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Ecol Biogeogr 22:105–117. https://doi.org/10.1111/j.1466-8238.2012.00788.x

    Article  Google Scholar 

  43. Qi D, Yang C, Yun T, Wu Z (2023) The main service functions and driving forces of rubber (Hevea brasiliensis) plantation ecosystem in China. J Rubber Res 26:155–164. https://doi.org/10.1007/s42464-023-00202-w

    Article  CAS  Google Scholar 

  44. Yang S, Wu Z, Yang C, Song B, Liu J, Chen B, Lan G, Sun R, Zhang J (2023) Responses of carbon exchange characteristics to meteorological factors, phenology, and extreme events in a rubber plantation of Danzhou, Hainan: evidence based on multi-year data. Front Ecol Evol 11:1194147. https://doi.org/10.3389/fevo.2023.1194147

    Article  Google Scholar 

  45. Sun R, Wu Z, Chen B, Qi D, Yang C (2016) Spatio-temporal patterns of climatic changes in Hainan Island in recent 55 years. J Meteorol Res Appl 37:1–7

    Google Scholar 

  46. Cui W, Xiong Q, Zheng Y, Zhao J, Nie T, Wu L, Sun Z (2022) A study on the vulnerability of the gross primary production of rubber plantations to regional short-term flash drought over Hainan Island. Forests 13:893. https://doi.org/10.3390/f13060893

    Article  Google Scholar 

  47. Wu Z, Tao Z, Lan G, Wang J, Xie G, Zhou Z (2014) The net ecosystem carbon exchange and its environmental factors in a tropical rubber plantation ecosystem in Hainan Island. Chin J Trop Crops 35:2099. https://doi.org/10.3969/j.issn.1000-2561.2014.11.001

    Article  Google Scholar 

  48. Zhang Y, Xu X (2021) Solid particle erosion rate predictions through LSBoost. Powder Technol 388:517–525. https://doi.org/10.1016/j.powtec.2021.04.072

    Article  CAS  Google Scholar 

  49. Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D, Wang Y, Ryu Y, Chen G, Dong W, Hu Z (2019) Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv 5:eaax1396. https://doi.org/10.1126/sciadv.aax1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu B, Qi B, Ji K, Liu Z, Deng L, Jiang L (2022) Emerging hot spot analysis and the spatial–temporal trends of NDVI in the Jing River Basin of China. Environ Earth Sci 81:55. https://doi.org/10.1007/s12665-022-10175-5

    Article  Google Scholar 

  51. Getis A, Ord JK (2010) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

    Article  Google Scholar 

  52. Rossi F, Becker G (2019) Creating forest management units with hot spot analysis (Getis-Ord Gi*) over a forest affected by mixed-severity fires. Aust For 82:166–175. https://doi.org/10.1080/00049158.2019.1678714

    Article  Google Scholar 

  53. Yu P, Zhou T, Luo H, Liu X, Shi P, Zhang Y, Zhang J, Zhou P, Xu Y (2022) Global pattern of ecosystem respiration tendencies and its implications on terrestrial carbon sink potential. Earth’s Future 10:e2022EF002703. https://doi.org/10.1029/2022EF002703

    Article  Google Scholar 

  54. Yao Y, Wang X, Li Y, Wang T, Shen M, Du M, He H, Li Y, Luo W, Ma M (2018) Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob Change Biol 24:184–196. https://doi.org/10.1111/gcb.13830

    Article  Google Scholar 

  55. Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CE, Fauset S, Mukinzi JM (2020) Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579:80–87. https://doi.org/10.1038/s41586-020-2035-0

    Article  CAS  PubMed  Google Scholar 

  56. Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, Wang HM, Zhou GS, Jia BR, Xiang WH, Li YN, Zhao L, Wang YF, Shi PL, Chen SP, Xin XP, Zhao FH, Wang YY, Tong CL (2013) Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol 19:798–810. https://doi.org/10.1111/gcb.12079

    Article  Google Scholar 

  57. Kriedemann PJFPB (1986) Stomatal and photosynthetic limitations to leaf growth. Funct Plant Biol 13:15–31. https://doi.org/10.1071/PP9860015

    Article  Google Scholar 

  58. Kosugi Y, Mitani T, Itoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Nik AR (2007) Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47. https://doi.org/10.1016/j.agrformet.2007.06.005

    Article  Google Scholar 

  59. Kukumägi M, Ostonen I, Kupper P, Truu M, Tulva I, Varik M, Aosaar J, Sõber J, Lõhmus K (2014) The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agric For Meteorol 194:167–174. https://doi.org/10.1016/j.agrformet.2014.04.003

    Article  Google Scholar 

  60. Dirks I, Navon Y, Kanas D, Dumbur R, Gruenzweig JM (2010) Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob Change Biol 16:2799–2812. https://doi.org/10.1111/j.1365-2486.2010.02172.x

    Article  Google Scholar 

  61. Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87. https://doi.org/10.1890/05-0023

    Article  PubMed  Google Scholar 

  62. Sihi D, Davidson EA, Chen M, Savage KE, Richardson AD, Keenan TF, Hollinger DY (2018) Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric For Meteorol 252:155–166. https://doi.org/10.1016/j.agrformet.2018.01.026

    Article  Google Scholar 

  63. Azam F, Smith D, Steward G, Hagström Å (1994) Bacteria-organic matter coupling and its significance for oceanic carbon cycling. Microb Ecol 28:167–179. https://doi.org/10.1007/BF00166806

    Article  CAS  PubMed  Google Scholar 

  64. Moyano FE, Kutsch WL, Rebmann C (2008) Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric For Meteorol 148:135–143. https://doi.org/10.1016/j.agrformet.2007.09.006

    Article  Google Scholar 

  65. Price JC (1993) Estimating leaf area index from satellite data. IEEE Trans Geosci Remote Sens 31:727–734. https://doi.org/10.1109/36.225538

    Article  Google Scholar 

  66. Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94:244–255. https://doi.org/10.1016/j.rse.2004.10.006

    Article  Google Scholar 

  67. Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, De Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res Biogeosci. https://doi.org/10.1029/2006JG000365

    Article  Google Scholar 

  68. Hashimoto H, Melton F, Ichii K, Milesi C, Wang W, Nemani RR (2010) Evaluating the impacts of climate and elevated carbon dioxide on tropical rainforests of the western Amazon basin using ecosystem models and satellite data. Glob Change Biol 16:255–271. https://doi.org/10.1111/j.1365-2486.2009.01921.x

    Article  Google Scholar 

  69. Humphreys ER, Black TA, Morgenstern K, Cai T, Drewitt GB, Nesic Z, Trofymow JA (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agric For Meteorol 140:6–22. https://doi.org/10.1016/j.agrformet.2006.03.018

    Article  Google Scholar 

  70. Yang Y, Wang S, Bai X, Tan Q, Li Q, Wu L, Tian S, Hu Z, Li C, Deng Y (2019) Factors affecting long-term trends in global NDVI. Forests 10:372. https://doi.org/10.3390/f10050372

    Article  Google Scholar 

  71. Guo P, Zhao X, Shi J, Huang J, Tang J, Zhang R, Chen J, Wang Q, Zeng J (2020) The influence of temperature and precipitation on the vegetation dynamics of the tropical island of Hainan. Theoret Appl Climatol 143:429–445. https://doi.org/10.1007/s00704-020-03430-x

    Article  Google Scholar 

  72. Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Glob Biogeochem Cycles. https://doi.org/10.1029/2004GB002281

    Article  Google Scholar 

  73. Li C, Li X, Yang Y, Shi Y, Li H, Yang P, Duan C (2022) The influence of degradation of alpine marshy wetland on ecosystem respiration and its components. Wetlands 42:62. https://doi.org/10.1007/s13157-022-01578-y

    Article  Google Scholar 

  74. Amthor JS, Amthor JS (1989) Crop growth and maintenance respiration. Respir Crop Prod. https://doi.org/10.1007/978-1-4615-9667-7_5

    Article  Google Scholar 

  75. Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154. https://doi.org/10.1016/0304-3800(88)90112-3

    Article  CAS  Google Scholar 

  76. Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MG (1998) Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ 21:953–968. https://doi.org/10.1046/j.1365-3040.1998.00339.x

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Danzhou Tropical Crop Scientific Observation Experimental Station of the Ministry of Agriculture, the Rubber Research Institute of the Chinese Academy of Tropical Agricultural Sciences for providing the in-situ data. Also thanked the National Oceanic and Atmospheric Administration/Earth System Research Laboratory, the Global Land Surface Satellite and the Goddard Earth Sciences Data Information Services Center for allowing us to download the data. We also wish to thank the National Earth System Science Data Center, National Science and Technology Infrastructure of China.

Funding

This study was funded by National Key Research and Development Program of China (2021YFD2200404); National Natural Science Foundation of China Youth Science Fund Project (42101101) and National Natural Science Foundation of China Regional Science Fund Project (32160320).

Author information

Authors and Affiliations

Authors

Contributions

YA, ZW, and ZS conceived of or designed study. YA, YW and RZ contributed to data analysis and result visualisation. YA, and RZ wrote the manuscript. LW, WL, and PW contributed to revision this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhongyi Sun.

Ethics declarations

Conflict of interest:

The authors have no conflict of interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1296 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Wu, Z., Wang, Y. et al. Spatiotemporal dynamics and underlying mechanisms of ecosystem respiration in rubber plantations: a case study in Hainan Island. J Rubber Res 27, 283–298 (2024). https://doi.org/10.1007/s42464-024-00245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-024-00245-7

Keywords

Navigation